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ABSTRACT

In this thesis, we examine the theory of sub-Riemannian geometries arising as
transversal distributions to totally geodesic foliations. Various connections from the
literature are examined, and their adaptedness to the foliation structure and suitabil-
ity for computation of variational problems is discussed. We study particularly the
notion of H-type foliation that was jointly introduced in [24]. A generalized curva-
ture dimension inequality, horizontal Einstein property, and classification result are
achieved. The holonomy of H-type foliations is explored, in particular we achieve a
result on the holonomy of H-type submersions. Finally comparison theorems for the
Hessian and Laplacian of the distance function based on variational principles are

presented from the joint work [25].
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Chapter 1

Introduction

This thesis explores sub-Riemannian geometries that can arise as transversal distri-
butions to Riemannian foliations. This notion was originally motivated as a broad
generalization of Kaplan’s H-type groups, where one considers the essential structure
to be the horizontal action of Clifford module generated by the vertical space. On an
appropriately compatible Riemannian foliation we can define the notion of an H-type
foliation, where the Clifford algebra generated by the vertical distribution gives sig-
nificant information about the sub-Riemannian geometry; these objects encompass a
number of important examples that are thereby justified as models for comparison
theorems.

The thesis is structured as follows:

Chapter 1: We review relevant notions of foliation theory and sub-Riemannian ge-

ometry, as well as introduce the main results of the thesis.

Chapter 2: We study the theory of connections adapted to foliations. In particular



Chapter 3:

Chapter 4:

Chapter 5:

we consider the conditions under which certain well-established connec-
tions in the literature coincide, and the theory of applications of these

connections to geodesics and Jacobi fields.

We present H-type foliations, a generalization of Kaplan’s H-type groups,
as introduced in [24]. By considering a complementary Riemannian folia-
tion on these spaces we deduce structural results on the sub-Riemannian

geometry of interest.

We study a notion of horizontal holonomy on H-type foliations that is well
defined by considering an adapted connection to the foliation. In particu-
lar we recover a relationship between horizontal holonomy of H-type sub-
mersions and the classification of nonsymmetric Riemannian holonomies

due to Berger-Simons-Olmos.

We present comparison theorems on H-type foliations determined by con-
sidering the convergence of Riemannian penalty metrics, as in [25]. A
Bonnet-Meyers type diameter bound and sub-Laplacian comparison that

classically follow from Ricci curvature lower bounds are recovered.

1.1 Background

Throughout the thesis we will assume a familiarity with differential geometry, espe-

cially the theory of Riemannian manifolds. In this section we will review core concepts

of the theory of foliations and of sub-Riemannian geometry because of their central

nature to the topic of the thesis and to set notation.



1.1.1 Foliations

A foliation is a partition of a manifold into equivalence classes that locally models

the partition of R"*™ by submanifolds R™.

Definition 1.1.1. Let M be a n + m dimensional manifold. Suppose there exists a
disjoint collection F of connected, immersed m-dimensional submanifolds such that

for each p € M there is a neighborhood U, and a smooth submersion

gbUpI Up — R"

with the property that for any z € R" the set f~!(z) is either empty or the intersection

of one of the submanifolds of F with U,,.

We call the collection F a (codimension-n) foliation of M, and the submanifolds

leaves. A primary resource and overview of the extensive literature on foliations is

[TT1]. Other valuable references include [66), 73] 87, 30, [86]

Remark 1.1.2. It is important to note that foliations are locally modeled by sub-

mersions; this will be essential multiple times in the sequel.

In particular, we are interested in the structure of the tangent spaces to a foliation.
On a manifold Ml with foliation F there is a natural subbundle V of TM defined by
the property that at every point p € M, V), is the tangent space of the leaf of F; we

will refer to V as the vertical distribution associated to the foliation. By the Frobenius

integrability theorem [58] V is completely integrable, by which we mean that for any

vector fields X, Y € V it must hold that the Lie bracket [X,Y] € V.

Given a Riemannian metric g on a foliation (M, F) we can consider the trans-

verse distribution H defined such that at every point p € M the tangent space splits




orthogonally as

T,M =H, & V.

Conversely, given a distribution H with the property that the intersection H, NV, is
trivial for all p € M we have up to a choice of normalization a Riemannian metric
g that will orthogonally split the tangent bundle. It is important for our purpose to
understand that this construction does not impose any condition on the integrability
of H. We will call a foliation equipped with a Riemannian metric a Riemannian
foliation.

We will want to distinguish certain geometric conditions on Riemannian foliations.

(a) We will say that (M, F, g) is totally-geodesic if all of the leaves of F are totally-

geodesic submanifolds; that is if every geodesic of the leaves is a geodesic of M.

See especially [73].

(b) We will say that (M, F,g) is has bundle-like metric if the local submersions of

the foliation are diffeomorphisms.

Remark 1.1.3. We mention that these conditions do impose conditions on the cur-
vature of M, the dimensions of H, )V, and on the integrability of #, as shown in [31].

In particular, H cannot be completely integrable.

It is a result of Tondeur that these properties can be characterized by the Lie

derivative of the metric.
Theorem 1.1.4 (Tondeur [I10]). Let (M, F,g) be a Riemannian foliation.

(a) (M, F,q) is totally-geodesic if and only if for all X € H,Z €V it holds that

(‘CX g)(Z7 Z) = 0.



(b) (M, F,qg) has bundle-like metric if and only if for all X € H,Z € V it holds that

('CZg)(X7 X) =0.

Unless otherwise stated, we will always insist that our foliations be totally geodesic

and have bundle-like metric.

1.1.2 Sub-Riemannian Geometry

Sub-Riemannian geometry is the study of manifolds that allow for a notion of motion

or length as in Riemannian geometry, but in a constrained way.

Definition 1.1.5. Suppose M is a smooth manifold. If H is a subbundle of T™M
that has the property that at every point p € M the entire tangent space T,M is

generated by finitely many brackets of vectors in H,,, we say H is bracket-generating.

If moreover (M, H) is equipped with a fiberwise inner-product gz;, we say the triple

(M, H, g3) is a sub-Riemannian manifold with horizontal distribution H.

The smallest number of vector fields z1, 29, ..., 2, € H, needed to generate T,M
is called the step of the structure at p. If this is constant across M, we say the

sub-Riemannian structure is equivariant.

Sub-Riemannian geometry is increasingly of broad research interest, both intrin-
sically and as it arises in many natural situations such as in physics, control theory,
PDEs, stochastic differential equations, and many other fields. Some excellent ref-
erences include [88, [7, 2, B2, 46], [70, T0I]. We will work always with equivariant
sub-Riemannian manifolds of step 2 in this thesis; it is an interesting direction of

research to consider generalizations of our results to higher step.



It is immediately clear that H is not integrable; in fact the bracket-generating
condition is equivalent to H being as far from integrable as possible. This allows for

sub-Riemannian manifolds to be complete, in the following sense.

Definition 1.1.6. Suppose v: [0, 1] — M is a smooth curve with the property ~(¢) €
H,(t) for almost every 0 < ¢ < 1. We say that v is horizontal, and we define its

length

o) = / NEORIOR.

Moreover, for any two points p, ¢ € M we define the Carnot-Caratheodory distance

dee by

v€C(p,q)

where C(p, q) is the collection of horizontal curves connecting p to g.
Importantly, we have a result on the completeness of the metric.

Theorem 1.1.7 (Chow [51], Rashevskii [08]). On a sub-Riemannian manifold (M, H, gx)
the bracket-generating condition implies that any two points p,q can be connected by

an almost everywhere horizontal curve of finite length.

Many sub-Riemannian manifolds have a natural foliation structure. That is, there
exist Riemannian foliations (M, F, ¢g) such that the metric splits orthogonally as g =
g1 @ gy where V is the (completely integrable) tangent distribution to the leaves and
the transversal distribution # is bracket-generating, thus the triple (M, H, g3) is a
sub-Riemannian manifold. These will be primary objects of interest and we will see
many examples, particularly in section [3.3] We refer to [26] 22, 63| [64] for more about

the sub-Riemannian geometry associated to foliations.



1.2 Motivating Questions

Sub-Riemannian geometry is a relatively young field and many important questions
remain open. Much of the approach to the field begins in analogy to Riemannian
geometry: recalling important Riemannian results, do they carry forward (with some

suitable generalization) to sub-Riemannian structures?

1.2.1 Curvature in sub-Riemannian geometry

Definition 1.2.1. Let (M, H, g3) be a sub-Riemannian manifold, and let (M, g) be
a Riemannian manifold such that g = g3 @ gy is an orthogonally splitting extension

of g3. We define the associated penalty metric

1
ge =9gn @ ggv

Clearly, g1 = ¢, and for any € > 0 the pair (M, g.) is a Riemannian manifold.
As ¢ — 0" the magnitude of any vertical vector approaches +oo; heuristically we
can interpret this as the “cost” to move in a vertical direction as increasing without
bound and so in the limit the only curves which will have finite length are those that
are everywhere tangent to the horizontal distribution. This is made precise in the

following sense:

Theorem 1.2.2. In the Gromov-Hausdorff sense we have the convergence
e—0Tt
(Mv Ha gé‘) _)—> (M7 Ha g’H)

From here, one could hope to directly recover many classical Riemannian results



on sub-Riemannian manifolds by consideration of the limit of Riemannian curvature.

Unfortunately this isn’t possible per the following lemma.

Lemma 1.2.3. Let (M, H, g) be an H-type foliation with penalty metric. Denote by
Ric®(X,Y) = Trg.(R°(X, x)X,Y) the Ricci curvature associated to the metric g.

with Levi-Civita connection V&,

-0 X, YeH
lim+ Ric®(X,Y) =
=0 +oo X, Y eV
As a consequence, any Riemannian result that relies on lower curvature bounds
will fail. Much recent literature has been dedicated to resolving this, and in partic-
ular there is significant work in determining an appropriate definition of curvature

quantities in the sub-Riemannian setting in order to recover Riemannian-type results.

Arguably there are two main schools of thought:

e Hamiltonian, as developed in [85], in which one considers the intrinsic sub-
Riemannian Hamiltonian on the cotangent bundle, and thereby studies varia-

tional problems.

e Eulerian, as developed in [21], in which one allows for an analytic structure de-
fined on a complementary distribution ) and arrives at purely sub-Riemannian

results by showing an independence from the choice of complement.

One primary motivation for our study of H-type foliations is an agreement of
these methods; as we will see, there is a sense in which results from both schools are

meaningful in this setting and for which the results are complementary.



1.2.2 Models Spaces in sub-Riemannian Geometry

In particular, there is a notion of comparison theory in Riemannian geometry. It
is well established that the only Riemannian manifolds of constant curvature are
the sphere S™, the Euclidean space R", and the hyperbolic space H" with positive,
zero, and negative curvature, respectively. On these spaces one computes quantities
of interest explicitly, and then establishes results that determine conditions under
which these quantities can be compared to those of the model spaces. This process

includes results such as

e Rauch and Laplacian comparison theorem

Bonnet-Meyers diameter and compactness theorem

Bishop-Gromov inequality

Cheng rigidity theorem

Eigenvalue estimates

among others. Leaving aside the issue of determining a precise notion of curvature,
there is a growing consensus [16] that among step 2 sub-Riemannian structures that
the Hopf fibration, the Heisenberg group, and the Anti-de Sitter fibration are appro-
priate models analogous to the the Riemannian ones for comparison theorems to be
built upon. Key properties of these models are captured by the notion of H-type

foliation that we examine.

Remark 1.2.4. The issue becomes significantly more difficult in higher step, as it
becomes apparent that any single curvature quantity is insufficient to determine model

spaces, see for example [61] and the references therein.
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1.3 Main Results

In Chapter 2, our main goal is to understand the notion of a connection adapted
to a foliation (definition and to explore examples of this in the literature.
In particular, we describe the Bott connection (theorem axiomatically and
provide a series of results describing the equivalence of other connections with the

Bott connection.

‘ Structure ‘ Torsion ‘ Reference ‘
Complex Type, m =1,n = 2k
K-Contact YM [3] [28]
Sasakian Cp [3] [40]
Heisenberg Group CP [45]
Hopf Fibration S! — S?**1 — CP* CP [27]
Anti de-Sitter Fibration S! — AdS**!(C) — CH* CP [43] [112]
Twistor Type, m = 2,n = 4k
Twistor space over quaternionic Kahler manifold HP [65] [105]
Projective Twistor space CP' — CP?*+1 — HP* HP [29]
Hyperbolic Twistor space CP' — CH*+! — HH* HP [20] [43]
Quaternionic Type, m = 3,n = 4k
3K-contact YM [72] [109]
Negative 3K-contact YM [72] [109]
3-Sasakian HP [39] [104]
Negative 3-Sasakian HP [39]
Torus bundle over hyperkéhler manifolds CP [67]
Quaternionic Heisenberg Group CP [45]
Quaternionic Hopf Fibration SU(2) — S**3 — HP* HP [29]
Quaternionic Anti de-Sitter Fibration SU(2) — AdS™™(H) — HH* | HP [20] @3
Octonionic Type, m =7,n =38
Octonionic Heisenberg Group CP [45]
Octonionic Hopf Fibration S* < S'* — QP! HP [94]
Octonionic Anti de-Sitter Fibration S — AdS™(0Q) — OH" HP [43]

‘ H-type Groups, m is arbitrary ‘ CP ‘ [52] [74 ‘

TABLE 1.3.1: [24] Table 3] Some examples of H-type foliations.

In Chapter 3 we follow [24]. The primary object of the thesis, H-type foliations
(definition [3.2.2)), are justified and introduced. To indicate the breadth of these
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objects, we reproduce table m [24] Table 3], classified by the behavior of the Bott
torsion (definition [3.2.4)).

We show that H-type foliations are Yang-Mills (lemma and thereby satisfy
a generalized curvature dimension inequality (theorem under a Ricci curvature
condition on the horizontal distribution. By consideration of parallel Clifford struc-
tures [3.2.2] there is a achieved a complete classification of H-type foliations arising
as global submersions section [3.2.1, We also establish an horizontal Einstein prop-
erty (theorem giving the necessary curvature bounds so that on a wide class of

H-type foliations we have the following result.

Theorem 1.3.1 (theorem [3.4.12] [24] Corollary 3.20]). Let (M, H,g) be an H-type
foliation with a parallel horizontal Clifford structure such that k > 0. Then, M is

compact with finite fundamental group. Moreover,

e Ifm # 3 orm = 3 and (M, H,g) is of quaternionic type then we have the

sub-Riemannian diameter bound

(n+ 4m)(n + 6m)
(n+8(m—1)) "

diam(M, d,.) < 4\/_\/_\/

and we have the following estimate for the first eigenvalue of the sub-Laplacian

) En(n+8( - 1))
12 4 n+3m-1

e Ifm = 3 and (M, H,g) is not of quaternionic type, then we have the sub-

Riemannian diameter bound

(n+12)(n + 18)
nn+8 '

diam(M, d..) < 2\/_\/_\/
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and we have the following estimate for the first eigenvalue of the sub-Laplacian

A > -
In Chapter 4 we explore a notion of horizontal holonomy of H-type foliations. In
particular, we show that on H-type submersions there is a strong relationship between

the horizontal holonomy and the Riemannian holonomy of the base space.

Theorem 1.3.2 (theorem [4.3.7)). For an H-type submersion (M, H, g, ),

0

Hol’(H) = Hol (B)

We also achieve a structural theorem in the more general setting of H-type folia-

tions with parallel horizontal Clifford structure (definition [3.2.21]).

Theorem 1.3.3 (theorem [4.3.11)). Let (M, H, g) be an H-type foliation with parallel

horizontal Clifford structure, and set n = rank(#), m = rank(V).
(a) If m = 1, then Hol"(H) is isomorphic to a subgroup of U(n/2).
(b) If m > 2 and k = 0, then Hol’(H) is isomorphic to a subgroup of Sp(n/4).

(¢) If m = 3 and and the maps J,,z € V form a Lie algebra under commutation at

every point, then Hol®(H) is isomorphic to a subgroup of Sp(1)Sp(n/4)

In Chapter 5 we follow [25], in which we consider a family of Riemannian metrics
on an H-type foliation converging to the sub-Riemannian structure. By consideration
of Jacobi fields for adapted metric connections with metric adjoint (section we
are able to establish uniform comparison theorems that thereby hold in the sub-

Riemannian limit. These include
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Theorem 1.3.4 (theorem [5.3.11} [25, Theorem 3.10(b)]). Let (M, H, g) be an H-type

foliation that is complete and has horizontally parallel torsion. Assume there is some

p > 0 such that for any unit X € H,Z € V we have

Sec(X N JzX) > p.

Then
2T

S -
\/ﬁ
Theorem 1.3.5 (theorem [5.3.15, [25, Theorem 3.12]). Let (M, H,g) be an H-type

foliation with parallel horizontal Clifford structure satisfying the J? condition. Let

diamg (M)

x € M and define ro(y) = do(x,y). Assume there exists p > 0 such that

Sec(X AY) >p

for all X, Y € H. Fory ¢ Cuty(z) we have

A7—[740 S (n —m — 1)FRiem(T07 KRiem) + FSas(TOa KS&S,"}/) + (m - 1)FSas(r07 KSas,J_)

where

1
KRiem = p + ZLHVVTOW
KSas,"y =p+ ||VVTU”2

KRiem,1 = p — 2||Vyro|*.



Chapter 2

Connections on Foliations

In this chapter we examine the notion of connections on foliations; in particular we
investigate what it means for a connection to be adapted to a metric and to a foliation,

and present a series of useful results for connections with a variety of properties.

2.1 Theory of Connections

Let M be a smooth manifold. There exists an intrinsic notion of differentiation of
vector fields on M given by the Lie derivative, defined for vector fields X,Y on M as

the derivation

LxY =[X,Y]= XY —YX.

This follows from the perspective of the Lie derivative as the appropriate first-order

term in the flow generated by a vector field, that is

DE Y Y |pt() = Y
H

14
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where t — F'(0) is the flow generated by X, that is the integral curve for X with
F°p) = p. We refer to standard texts such as [113}, [77, 80] for more details.
Unfortunately, it isn’t difficult to see that this definition depends on X not only
at p, but in a neighborhood of p; this is undesirable from the point of view of parallel
transport, as it’s not possible to sensibly describe the transport of a vector field along
a curve.
One resolution of this issue with the Lie derivative arises in the notion of a con-

nection.

Definition 2.1.1. Let 7: £ — M be a vector bundle over M, and suppose

V: I(TM) ® T(E) — I'(E)

written (X, s) — Vxs is a map such that

1. For a fixed s, X + Vxsisa (1,1) tensor. That is

V totrgus = Vs +gVys

for vectors u,v € T,M and functions f, g.

2. For a fixed X, s+ Vs is a derivation. That is

VX<f8 —|—Tf) = (Xf)S + fVXS + th

for sections s,t € I'(E) and functions f.

Then we call V an (affine) connection on FE.
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Remark 2.1.2. Unlike for Lie derivatives, it follows from the tensorial property 1
that the map X — VxY at a point p € M depends only on X|,, and so it is sensible

to understand connections as a form of directional derivative.

There are many definitions of connections in the literature, see for example [35,

77, 96] for thorough introductions.

Remark 2.1.3. A connection defined on the tangent bundle 7: TM — M can be
extended to a connection on all tensor fields by requiring that a Liebniz’ rule and
product rule hold. Specifically, for an (s, r)-tensor S = 51 ® --- ® Sy, we require the

Liebniz’ rule
(VxS Vi, Y) = Va(S(, -, ¥) = DS, Vi V)
and the product rule
VXS:i&@---@(vx&)@---@&.
i=1
We will also define a (s, + 1)-tensor V.S by
(V) (X, Y, Ye) = (VxS) (Y, -, 0.

We will be concerned primarily with such connections, and will refer to a con-

nection defined on TM as a connection on M. Hereafter all connections should be

assumed to be connections on M unless otherwise stated.
Connections are not intrinsic to the structure of a manifold, in the sense that any

manifold will have many connections. In fact, we can characterize all connections on
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a manifold as differing by a tensor by the following.

Theorem 2.1.4. Suppose V', V? are both connections on M. Then

A(X)Y) =VyY - VyY

is a (1,2)-tensor. Moreover, for any connection V' on M and any (1,2)-tensor A,

ViY = VLY + A(X,Y)

18 a connection on M.

Proof. We refer to [35] for the proof. O

Up to the existence of at least one connection, we can see that there is a bijection

from the set of (1,2)-tensor fields on M to the set of connections on M.

Remark 2.1.5. Because of this, we want to emphasize the perspective that connec-
tions are extrinsic, and that any results on the topological, smooth, Riemannian, or
other structures on a manifold should be independent of the choice of connection.
They should be considered tools for the computation of intrinsic results. However,

the choice of a connection can be a powerful tool to simplify computations.

2.1.1 Parallel Transport

Improving on the situation with the Lie derivative, connections induce a notion of

parallel transport of tensors on a manifold. In particular, we say that a tensor s along
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a curve v: [0,7] — M is V-parallel if
Vﬁs =0.

This is well-defined since connections are tensorial in the first component. In fact,

given a curve v we sometimes define the covariant derivative along ~,

Dis = (Vis) (1(0))

This is only well-defined for s defined on a neighborhood of 7, but we are usually
interested in results that are independent of a choice of extension for s|,.

If one has a curve v: [0,1] — M and a tensor s € £, one can define a tensor
field s along v by parallel transport. This is an ODE and has has a unique solution,

which we will refer to as the parallel transport of s along ~.

We will also make sense of the notion of a V-parallel structure in the following
way. Suppose S is a subspace of the total space E of a vector bundle 7: £ — M. If

S has the property that for all s € S and any vector field XT'(TM) that

Vxse§

then we say S is V-parallel.
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2.1.2 Levi-Civita Connection

For any connection V we can define the torsion tensor

TV(X,Y)=VxY - VyX — [X,Y].

We will say that V is torsion-free if TV = 0.

On a Riemannian manifold (M, g) we compute that

(Vxg)(Y,Z) = Xg(Y,Z) — g(VxY,Z) — g(Y,VxZ)

and we will say that V is compatible with ¢ or that it is metric if Vg = 0; this is

motivated by the fact that for metric connections V we have the sensible formula for

the derivative of the metric

X g(Y,Z) = g(VxY, Z) + g(Y, Vi 2).

Equipped with these definitions, there is the well-known

Theorem 2.1.6 (Fundamental Theorem of Riemannian Geometry). Let (M, g) be a
Riemannian manifold. Then there exists a unique connection V9 on M that is metric

and torsion-free. We call V9 the Levi-Civita connection.

Proof. Suppose that V is a metric and torsion-free connection on M. We have the

metric relation

9(VxY, Z)+g(Y,VxZ)=Xg(Y,Z)
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which we can cyclically alternate to recover the Koszul formula

20(VxY,Z)=Yyg(X,Z)+ Xg(Z,)Y) — Zg(Y, X)

- g([Y,X],Z) - g([X7 ZLY) +g([Z7 Y]’X)

This formula uniquely determines V9, proving both existence and uniqueness. O

2.1.3 Metric connections and the Koszul formula

By theorem [2.1.4]any connection on a Riemannian manifold can be written as the sum
of the Levi-Civita connection with a (1,2)-tensor, but it will often be more useful to
understand connections by an axiomatic description. From the proof of the existence

and uniqueness of the Levi-Civita connection, we can make the following observation.

Theorem 2.1.7. Let V be a metric (but not necessarily torsion-free) connection on

a Riemannian manifold. Then we can write
VxY =V%Y + A(X,Y)

where

AV(X,)Y) = (TY(X,Y) - J§ X — JYY)

N | —

and JV is given by

JXY = (TV)(Y,-, X))*. (2.1.1)

Proof. The metric relation

g(VxY,2)+g(Y,VxZ) = Xg(Y, Z)
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can be cyclically summed to recover the general Koszul formula

29(VxY,2) =Yg(X, Z)+ Xg(2,Y) - Zg(Y, X)
- g([}/a X],Z) - g([Xv Z]’Y) +g([Z’ Y]vX)
- g(TV(Y,X),Z) - g(TV(X, Z)>Y) —I—g(TV(Z, Y)vX)

Observing that
g(IXY, Z) = (T (Y, Z), X),

the theorem follows. O

Of course, the torsion TV and its dual JV depend on the connection V. This
gives us a condition under which a metric connection will be uniquely defined which

we will use often in order to give axiomatic descriptions of connections.

Corollary 2.1.8. Any metric connection V = V9 + AV is uniquely defined by an

expression for AV independent from the connection itself.

2.2 Adapted Connections on foliations

In this section we introduce the notion of an adapted connection to a foliation, and

consider a number of well-known examples.

Definition 2.2.1. Let (M, F,g) be a foliation with vertical distribution V and a

choice of transverse distribution H. We say that a connection V is adapted to the foli-

ation if the connection preserves the foliation; that is if for any vector field X € I'(TM)

it holds that
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o forall Y e I'(H), VxY € I'(H), and
o forall Z € T(V), VxZ € T(V).

Generally, the Levi-Civita connection V¢ is not an adapted connection (the ex-
ception being of course a trivial foliation of R™). We shall usually work with metric
connections; we note that it follows from the uniqueness of the Levi-Civita connection

as metric and torsion-free that adapted metric connections must have torsion.

2.2.1 Bott’s Connection

Standard in the literature on foliations [I10] [68] [26] is the notion of the Bott con-

nection, which is a metric connection well-adapted to the splitting.

Theorem 2.2.2 (Generalized Bott Connection). For (M, g, F) be a foliation with
orthogonally splitting metric g = gy ® gy. Then there exists a unique connection V2

over M called the Bott connection satisfying the following:

1. VB is metric,
2. VB respects the foliation,
3. TB(E,E) C E+,

4. For Z € E*, the tensor Cz € EQE*QE* given by Cz(X,Y) = g(TB(X, Z),Y)

18 symmetric.

where properties 3 and 4 hold for both E =H and E = V.
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Proof. We will show that the four properties of the Bott connection uniquely deter-
mine it. Suppose that V is a connection satisfying properties 1-4. From corollary

it is sufficient to prove that

AV(X,Y) == (TY(X,Y) - Jy X — JYY)

1
2

can be determined independently of V. We proceed by cases. Observe that g(VxY, Z) =
0 whenever Y € E, Z € E* by property 2, so we only consider g(A(X,Y), Z) for the

case Y, Z € E. If X € E we see from property 3 that
9(T(X,Y), Z) = g(Jy X, Z) = g(JxY. Z) =0

so g(AV(E,E),E) = 0.

If X € E+, it follows from property 2 that

or equivalently

JxY = _(ng('a X))ﬁ

and from property 4 that
g(T(X,)Y)—-JyX,Z)=0.

and so AV is uniquely determined by properties 1-4.
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Remark 2.2.3. Notice that all 4 properties are necessary to determine A, which

shows that they constitute a minimal axiomatic description of the Bott connection.

Corollary 2.2.4. The Bott connection can be written explicitly as

(

pry, VLY X, Y eH

pry[X, Y]+ AxY XeVYeH
VY =

pry[X, Y]+ AxY XeHYeV

pry V&Y X, YeVy
\
where V9 denotes the Levi-Ciwita connection, and the (1,2)-tensor A is given by

AY = = ((Lpry x )13 Y, 01 ) + (Lpny x 9)(pry Vo pry )

N —

Its torsion has the form
TE(X,Y) = —pry[pry X, pry, Y] + AyY — Ay X.

Proof. This follows directly from the explicit expression for A obtained in the proof

of the previous theorem, observing that for Y, Z € E, X € E+
B
29(AV(X,Y), Z) = g([Y. Z], X) = (Ly 9)(Z, X) — g(Z,[Y, X])

and so

g(VRY, Z) = g(V%Y + AV (X,Y), Z)

= g([X,Y], Z) + AxY
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after an application of Koszul’s formula. n

Remark 2.2.5. Notice, our expression for the Bott connection is symmetric in H and
V except for one term in the torsion; this only occurs because the bracket of vertical
fields remains vertical, as can be seen by considering basic fields (see lemma4.3.3). In

some sense then, the connection doesn’t see the difference between the distributions.

Frequently [110], 1T5] the name ‘Bott connection’ is ascribed to the restricted case
of totally geodesic foliations with bundle-like metric, or to the partial connection
along the leaves V. In this setting A vanishes and the connection and torsion simplify

for X € E to

5 prp V&Y Y €E
prp[X,Y] Y eEL

and
TP(X,Y) = = pry[pry, X, pry, V]
2.2.2 Tanaka-Webster-Tanno Connection

Contact Manifolds

Definition 2.2.6. We call (M, 7) a contact manifold if M is a 2n 4+ 1 dimensional

manifold and 7 is a 1-form such that n A (dn)™ is a volume form on M.

Proposition 2.2.7. Let (M, n) be a contact manifold. There exist on M a unique
vector field &, a Riemannian metric g, and a (1,1)-tensor field J such that for all

X,Y € T(TM)
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1. n(§) =1, tedn =0,

2. 9(X, ) = n(X),

3. g(X,JY) = dn(X,Y),
42X = =X +n(X)E.

See [11] for a proof of the proposition, as well as an introduction to contact
manifolds.

¢ is called the Reeb vector field, and such a metric is said to be compatible with
the contact structure. A contact manifold (M, n) can be canonically equipped with a
codimension one foliation F; by choosing the horizontal distribution to be H = kern
and the vertical distribution V to be generated by the Reeb vector field ¢ . This is

known as the Reeb foliation.
Lemma 2.2.8. The characteristic foliation F¢ is totally-geodesic.
Proof. This is equivalent to requirement ¢edn = 0, see [40, lemma 6.3.3]. O]

Remark 2.2.9. In property 3 we take the modern convention, but in the original

work by Tanno [I08] he writes instead

29(X,JY) = dn(X,Y).

This is just a choice of normalization, but it will affect the H-type property that we
introduce in chapter [3} see remark [3.2.3

Remark 2.2.10. There has been established a large collection of statements ranging
from much weaker to much stronger on contact manifolds and related structures. See

[40] for a complete picture.
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Theorem 2.2.11 (Tanno [108]). Let (M, n) be a contact manifold. There exists a

unique connection VI on TM satisfying
1. V7T is metric,
2. V¢ =0,
3. THX,Y) =dn(X,Y)¢ for any X, Y € H,
4. TT(,TY) = —JTT(£)Y) for any Y € TM

5 VT =Q(,X) for any X, Y € TM,

where the Tanno tensor Q is the (1,2)-tensor field determined by

QY. X) = (V&)Y + ((VE&n)JY) £ +n(Y)J(V4S).

This connection is known as Tanno’s connection, or sometimes as the Tanaka-

Webster-Tanno connection.

Proof. Let V be a connection obeying the properties above; by corollary it is

enough to find an expression for

AXY) == (T(X,Y) = JxY — Jy X)

DO | —

independent of the connection. We begin by proving two lemmas.

Lemma 2.2.12. Any connection satisfying properties 1 and 2 must respect the foli-

ation.
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Proof. Notice first, for X € V

VyX = (Y -5(X))E € V.

For X € H,

g(VyX,é) - _(VYg>(X7§) +Y- g(X7§) - g(X7 VYS) =0

so Vy X € H, completing the lemma. O

From this, it is clear that we only need to establish expressions for g(A(X,Y), Z)
for Y, Z € E.

Lemma 2.2.13. For any connection obeying properties 1, 3, and 4 it will hold that
o T'(H,H) €V
e T(WH)eH
e TV, V)=0

Proof. Observe that if X,Y € #H that property 3 implies T'(X,Y) = dn(X,Y){ € V.
We see that the statement X = —J?X is equivalent to X € H, and so applying

property 4 twice it follows that

T, X)=-T(,J*X)=-JT( X) € H.

Finally, for X,Y € V we have

T(X,Y) =n(X)n(Y)T(£€) =0



29
from the skew-symmetry of T'. m

We now split the proof by cases. For X,Y,Z € Eor X € H,Y,Z € V, we can

apply the lemma and have simply

29(A(X,Y), Z) = g(T(X,Y), Z) — g(T(Y, Z), X) — g(T(X, Z),Y) = 0

In the case X € V.Y, Z € H we begin by considering property 4 of the torsion
and find

T(E,Y)=JT(E JY)
VeY — [€,Y] = J(Ve(JY) = [€,JY])
VeY = J(Ve)Y + J(VeY) = JIE, TY] — €, Y]

where we’ve used property 2 to eliminate several terms, and the () tensor appears.

Since this is an expression for V,’H independent of the connection we are done. [

Remark 2.2.14. The last case X € V,Y € H is somehow singular; taking a direct
approach to computing A(X,Y) gives only a formula for VY. We note that this

case is the only one for which property 5 is essential.

Corollary 2.2.15. Tanno’s connection can be explicitly written as

VXY = V&Y —n(X)JY —n(Y)V%E + (Vi)Y )E
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or equivalently

(

pry, V&Y X, YeH
Ty pry, V4Y —n(X)JY X eV,Y eH
Py =

pry[X, Y] XeHYeV

\prvv_gXY X, YeVy

Proof. By direct computation, the connection defined by this formula satisfies all of
the defining conditions; it follows from uniqueness that this must be Tanno’s connec-

tion. One important note for the computation is that we can write

dn(X,Y) = (Vi)Y — (Vin)X.

Since both tedn = 0 and V{n = 0 hold, it follows that the expression (V7)Y will

vanish unless we have both X,Y € H. n

The following proposition is often included as part of the definition of Tanno’s

connection.
Proposition 2.2.16. 7 is V' -parallel

Proof. Observe that for any vector fields X, Y,

(VIn)(X,Y) = (Vi)Y
=X n(Y) = n(VXY)

=X - nY)=n(X -nY)—-VipryY)=0

where we use that V7'¢ = 0, and that both H and V are V' -parallel. O
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Remark 2.2.17. A case of particular interest is when () = 0; this condition implies
J is VT-parallel, and is equivalent to (M,n,J) being a strongly pseudoconvex CR
manifold. Moreover, ¢ will be a Killing field, and the foliation will be totally geodesic

with bundle-like metric. We will investigate this in a later section.

Remark 2.2.18. In a recent work [92] Nagase and Sasaki address this same deficiency
of Tanno’s connection for computations on contact manifolds; that is, that the J map

is not parallel. In particular, they define the hermitian Tanno’s connection

1
Vily =viy — 5 1QY. X).

We note that they have taken the normalization ¢g(X,JY) = dn(X,Y) (see re-
mark [2.2.9). It can be straightforwardly verified that V#YJ = 0. This simplifies
the computation of some curvature quantities of interest, but it’s torsion does not

have desired symmetry properties for our purposes.

K-contact manifolds

By insisting the the Reeb field is Killing, we can make the canonical foliation F; have

bundle-like metric, at which point the Tanno and Bott connections agree.

Definition 2.2.19. Let (M, 7, g) be a contact manifold with compatible metric g.
We call Ml a K-contact manifold if the associated Reeb field € is a Killing field, that
is if

ﬁgg:().

Our interest in K-contact manifolds is motivated by the following
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Proposition 2.2.20. Let (M, 7, g, F¢) be a contact manifold equipped with Reeb foli-

ation F¢ and compatible metric g. Then the following are equivalent:

1. (M, n,g) is a K-contact manifold,

2. (M, Fe, g) is a totally-geodesic foliation with bundle-like metric g.

Moreover, if the above statements hold then the Bott connection V2 on (M, g, F¢)

and Tanno’s connection VT on (M, n, g) coincide.

Proof. We know from lemma that F¢ is totally-geodesic; since £ generates V,
it is clear that the manifold being K-contact is equivalent to it having bundle-like
metric.

The equivalence of VZ and V' will now follow, since V7 verifies property 1 defin-
ing the Bott connection by definition, properties 2 and 3 are precisely lemma [2.2.12
and lemma [2.2.13] respectively, and property 4 defining the Bott connection is veri-
fied by a consideration of the torsion property 4 of Tanno’s connection using that the

metric is bundle-like. In particular, (¢, JY) = 1(Le g)(-, JY ) = 0. O

1
2

CR Manifolds

We give a brief collection of definitions; for a full review see [55]. A CR-manifold of

type (n,m) is a pair (M, T} o(M)) where
e M is areal (2n + m)-dimensional smooth manifold,
e T10(M) is a complex subbundle of the complexified tangent bundle TM ® C

with complex rank n such that

T o(M) N To1 (M) = 0,
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where T071(M) = TI,O(M) and

e for any open set U C M,

DU, Ty o(M)), I'(U, T1o(M))] € T'(U, T10(M)).

We then define the horizontal distribution (known as the Levi distribution) on M

as the rank 2n subbundle of T™M

H = R(T10(M) & Ty, (M)).

There is a canonical complex structure J, on H given by

J(V+V)=i(V-V).
We can understand J, in this setting as distinguishing between T (M and Tj ;M. In
particular, Jy,: T} oM — Ty ;M and Jy,: To ;M — T oM.
For orientable CR-manifolds of type (n,1) (which we will refer to just as CR-

manifolds for the remainder of the paper) there is a notion of pseudo-Hermitian

stucture, which is a globally nonvanishing 1-form # such that

ker(0) O H

Given a pseudo-Hermitian structure 6 we can further define the Levi form

Lo(Z, W) = —i(df)(Z, W)
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for Z,W € T1o(M), and a bilinear structure Gy

Go(X,Y) = (d8) (X, J,Y)

for X,Y € H. Notice that Ly and (the C-bilinear H ® C extension of) Gy agree on
Ty o(M) ® Tp1(M). Moreover,

Go(J,X, 1Y) = Gy(X,Y).

Remark 2.2.21. This will imply that CR manifolds obey are H-type foliations, see
definition [3.2.2

There is a unique nonwhere vanishing tangent vector field £ on T'(M) such that

(9(5) = 1, LEdG =0

which we call the characteristic direction of (M, 6), and define the vertical distribution

VY = R¢ to be the subbundle of TM generated by . We see that

TM=HoV.

On a nondegenerate CR-manifold (that is, equipped with a pseudo-Hermitian

structure 6 with nondegenerate associated Levi form) there is a canonical semi-
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Riemannian metric gy referred to as the Webster metric given by

(

Go(X,Y) X,)YeH

90(X,Y) 0 XeNYevy

X)) XY eV

\

The signature (r,s) of Ly is constant, and the signature of gy is always (2r + 1, 2s).
Thus if Ly is positive definite we see that gy is Riemannian.

We begin with a convenient definition.

Definition 2.2.22. Let TV be the torsion of a linear connection V on a CR manifold

(M, 0) with characteristic direction {. We say that TV is pure if
1. TY(Z, W) =0,
2. TV(Z,W) = 2iLy(Z,W)E, and
3. toy+JporT=0

for any Z, W € T (M), where the pseudo-Hermitian torsion 7 is the endomorphism

of TM given by
r(X) = TV (&, X).

In this setting, there exists a well known adapted connection.

Theorem 2.2.23 (Tanaka [107], Webster [114]). Let (M, T} o(M)) be a nondegenerate
strongly pseudoconvex CR manifold and 0 a pseudo-Hermitian structure on M. Let
¢ be the characteristic direction of (M, 0), J, the complex structure on TM, and gy
be the Webster metric of (M,0). There is a unique metric connection VW on M

satisfying
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1. H is VIW -parallel,
2. VIWJ, =0, and
3. the torsion TV'" is pure.

We call VIW the Tanaka-Webster connection, which was introduced indepen-

dently by Tanaka in [I07] and Webster in [I14]. A thorough discussion can be found
in [55].

Proposition 2.2.24. The Tanaka-Webster connection on (M, 0) coincides with the

Bott connection on (M, H, gy).

Proof. We see that a nondegenerate CR-manifold is a contact manifold, identifying

the characteristic direction £ with the Reeb field £ and

0=
go = dn
Jo = J|un

In particular, Tanno’s () tensor vanishes, and as a consequence the manifold is
K-contact and the defining properties of the Tanaka-Webster connection are precisely
those of Tanno’s connection. We conclude that in this setting that the Bott, Tanno’s
and Tanaka-Webster connection coincide.

]

Remark 2.2.25. From this, we can consider Tanno’s connection a generalization of
the Tanaka-Webster connection. In fact, this is exactly the point of view that Tanno

took in his original paper.
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2.2.3 Biquard’s Connection

Quaternion Contact Manifolds

Definition 2.2.26. Let (M, g, H) be a 4n+ 3 dimensional Riemannian manifold with

a codimension 3 distribution A such that

1. ‘H has a Sp(n)Sp(1)-structure; that is there exists a rank 3 bundle Q consist-
ing of (1, 1)-tensors on H locally generated by three almost-complex structures
I, Iy, I3 on H satisfying the quaternion relations [;l5I3 = —id which are her-

mitian compatible with the metric, that is

9y 1) = g(--)

for j € {1,2,3}.

2. H is locally given as the kernel of a 1-form 1 = (11,72, 73) with values in R3
such that

g(L;X,Y) =dn;(X,Y)
for j € {1,2,3).

We then call (M, g, H, Q) a quaternionic contact manifold or qc manifold.

There is an appropriate generalization of the Reeb field to the qc manifold case:

Definition 2.2.27. Suppose there exists a supplementary subspace V to H and an

orthonormal basis {1, &2, &3} for V such that

L ni(&5) = s
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2. (tg;dn;)y = 0; and

3. (te;dne)n = — (e, dnj)m-

The fields &1, &, &3 are called Reeb vector fields, in keeping with the nomenclature for

contact manifolds.

Remark 2.2.28. Biquard [36] showed that Reeb vector fields always exist for a qc

manifold of dimension 4n + 3 > 7.

Observe that we can define a map ¢: V — End(#H) by

Z a;&§; — Z a;l;

In this setting, we have a canonical reference connection:

Theorem 2.2.29 (Biquard [36]). Let (M, g, H, Q) be a quaternionic contact manifold
equipped with Reeb fields {&;} forming a basis for V = HL. Then there exists a unique

connection VB with torsion TP on M.
1. VB is metric;
2. VB respects the splitting H ® V;
3. VBip = 0;
4. TP (H,H) CV;

5. for X € V, the operator TB(:) :== TP (X,-): H — H is in (sp(n) ® sp(1))*+ C

gl(4n).

The connection VB is called the Biquard connection on (M, g, H, Q).
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Remark 2.2.30. Duchemin [56] showed that assuming the existence of a triple of
Reeb fields, the Biquard connection is well defined for a 7-dimensional qc manifold.

Corollary 2.2.31. The Biquard connection on (M, g, H, Q) and the Bott connection
on (M, H,g) coincide.

Proof. The proof follows from verifying the defining properties of the Bott connection.
In particular, property 5 will imply the torsion symmetry. See [12], Section 1.2] for

more details. O

2.2.4 Hladky’s Connection

We begin in the general setting of sub-Riemannian manifolds with metric complement
on which there exists a connection known as Hladky’s connection. This connection

generalizes the Bott connection.

Graded Sub-Riemannian Manifolds with Compatible Metric

Definition 2.2.32. We call a sub-Riemannian manifold (M, g3;, H) equipped with a

choice of supplementary distribution V a sub-Riemannian manifold with complement

or sRC manifold.
We say that a sSRC manifold (M, g, H, V) is r-graded if there are smooth constant

rank bundles VU, 0 < j < r, such that

V:V(l)@...@v(r)

and

H P V(j) ® ['H, V(j)] CHO V(j) D Pl+1)
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for all 0 < j < r with the convention that VO = H and V) = 0 for j<O0Oandr <j.

An adapted metric extension for an r-graded sRC manifold (M, gy, V,H) is a

Riemannian metric g that agrees with g3 on H and makes the split

T™ =H P Vv

1<j<r
orthogonal.

For convenience, we shall denote by X ) a section of V) and set

Theorem 2.2.33 (Hladky [68]). Let (M, g, H,V) be an r-graded sRC manifold with

1(r)

adapted metric extension g. There exists a unique connection V7" with torsion

TH) such that
1. VHY) s metric, that is Vg = 0;
2. V) is parallel for all j;
3. THI (VW) Y)Y C YO for all §;
4 g(TH (XD Y8, 70y = o(TH D (720 y®)Y, XD for all j, k.

Proof. Suppose that V is a connection satisfying properties 1-4. Since V is metric,

we have the Koszul relation

29(VxY, Z) = 29(V&Y, Z) + g(T(X.,Y), Z) — g(T'(Y, Z), X) + g(T(Z, X),Y)
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Because V is parallel for each V), we need only consider the cases Y, Z € V).

If X € VU we see that
9g(T(X,Y), 2)=g(T(Y,Z2),X) =g(T(Z,X),Y)=0

so VxY =pr; VLY.

On the other hand, if X € V¥ we have that
g(T(Y,2),X)=g([Z2,Y],X) and ¢(T(X,Y),Z)+9(T(Z,X),Y)=0
so we can conclude
29(VxY, Z) = 29(VY, Z) + ¢([2, Y], X).

We thus have expressions for VY independent of V, and so if a connection
satisfies properties 1-4 it must be unique.

From the expression derived above, we can write

pr; VLY X, Y e y®
VY =

pr,[X, Y]+ ALY Y e VO X e YO
where the tensor A% € T*M ® TM is given by
245Y =1 <(£pr"X 9(Prym Y pryw ) + (ﬁprf;(i) x 9)(pr; Y, pr, >> :

The expression can be directly confirmed to satisfy the properties of the Hladky



42

connection, completing the proof. O

Remark 2.2.34. If X,Y € H we see that V") X and 77" (X,Y) are independent
of the choice of grading and metric extension. Moreover, an r-graded sRC manifold

also admits a k-grading (for all 1 < k < r) given by

YU — V(J'))o <j<k, Pk — @V(j)

>k

and then associated to each k-grading there is a connection vHIE)

For this entire
family of connections, vHID x (k) — H") X *) whenever 0 < k < 7, so in particular

for a horizontal vector field X it holds that

VHl(l)X _ le(Q)X — ... VHZ(T)X

k)

and so the differences between the connections V! ( X can be viewed as a choice of

how to differentiate vertical vector fields.

Definition 2.2.35. Let (M, g,H,V) be an r-graded sRC manifold with extended

metric. We will call V#!:= VY the Hladky connection.

We see that a foliated manifold with horizontal bundle H is a 1-graded sRC
manifold; we can thus understand the Hladky connection as a generalization of the

Bott connection.

Corollary 2.2.36. On a foliation (M, g, F,H) the Hladky connection and the Bott

connection coincide.
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2.3 Metric Connections with Metric Adjoint

We will now discuss a notion of connection that is not generally adapted to the

foliation, but is useful in the computation of geodesics.

Definition 2.3.1. Let (M, g) be a Riemannian manifold. For a connection V on M,

we define its adjoint connection

VxY =VxY —T(X,Y)=VyX +[X,Y]

where T'(X,Y) = VxY — Vy X — [X,Y] is the torsion of V.

Observe, % = V since
VxY = Vy X 4+ [X,Y] = VY.

For a metric connection V, it is not always the case that its adjoint V is metric.

Lemma 2.3.2. The adjoint of a metric connection V is metric if and only if the

tensor T" is completely skewsymmetric.

Proof. Directly,
(V29)(X.Y) = g(T(Z.X),Y) + g(X,T(Z,Y))
which vanishes if and only if

g(T(Z,X),Y) = —g(T(Z, Y>7X)
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For all vector fields X,Y, Z. Since the torsion T of any connection is always skew-
symmetric, this is equivalent to 7°(X,Y, Z) = ¢(T(X,Y), Z) being completely skewsym-

metric. O

We’ll see that it’s often desirable to have a metric connection with metric adjoint;
it is clear that the Levi-Civita connection has metric adjoint because the torsion-
free condition implies that it is self-adjoint. In contrast, adapted connections to a
foliation do not generally have metric adjoint. In this situation, one option is to use

the following result.

Lemma 2.3.3. Let (M, g) be a Riemannian manifold with a metric connection V.

Define a skew-symmetric tensor JxY by g(JxY,Z) = g(Z,T(X,Y)). Then the asso-

ciated metric adjoint connection

DxY = VxY + JxY

18 metric with metric adjoint.

Proof. First, we see that D is metric since

(Dxg)(Y; 2) = (Vxg)(Y, Z) = g(JxY, Z) — g(Y, Jx Z) = 0.

Also, we see that the tensor 77 is completely skewsymmetric since

= —g(JY +T(Z,Y) — Jy Z, X)

= —g(TD(Z, Y)vX)
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so applying the previous lemma we are finished. O

Lemma 2.3.4. Let (M, g, F) be a foliation with adapted metric connection V. The
associated connection D = V + J will preserve the foliation if any only if TV (H,V) =
0.

Proof. ForY € E,Z € B+,

9(DxY.Z) = —g(X, TV (Y, Z))

which vanishes if and only if T'(H, V) = 0. O

Corollary 2.3.5. On a foliation (M, g, F) the associated metric adjoint connection
to the Bott connection preserves the foliation if and only if the foliation is totally

geodesic with bundle-like metric.

2.3.1 The geodesic equation for connections with torsion

In this section, we investigate the variational properties of curves in terms of connec-
tions with torsion. We are especially interested in studying the properties of locally
length-minimizing curves.

In the following, let (M, g) be a Riemannian manifold and let V be a g-metric
connection on M. Denote by D = V + J the associated metric adjoint connection to

V, and let v: [0,7] — M be a smooth curve.

Definition 2.3.6. We say that v is a geodesic if it is a local length-minimizer. More
preciesly, v is a geodesic if there exists some sufficiently small 0 < ¢ty < T such that

for 0 < t < ty it will always hold that v will be the unique shortest curve between

7(0) and ~(?).
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We wish to complement this definition with a definition in terms of connections.
Heuristically, we understand that geodesics are curves with constant acceleration, and

interpreting connections as a notion of directional derivative leads to the following.

Definition 2.3.7. Let ~ be such that its velocity field 4 = dy (%) has constant

magnitude and is D-parallel. That is,

9(v,7) =C

Dyy = (Vs + J;)7 = 0.

We then call v a V-geodesic.

Remark 2.3.8. In the literature (e.g. [35]) we sometimes have the definition that ~y
is a V-geodesic if it is V-parallel. We prefer the above definition so as to guarantee

that for any metric connection, V-geodesics are geodesics as we will see below in

lemma [2.3.101

It is a well established result in Riemannian geometry that the geodesics of a
Riemannaian manifold (M, g) are precisely the V9-geodesics for the Levi-Civita con-

nection VY. Since it is torsion free, the equation is simply

V4 =0

which indicates why this result is often preferred.

Definition 2.3.9. Let (M, g) be a Riemannian manifold and let v: [0,7] — M be a

smooth curve. If ¢: [—¢,¢] x [0,T7] is such that

e ¢(s,0) =~(0) for all s € [—¢,¢], and
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e ¢(0,t) =~(t) for all t € [0,T]
then we call ¢ a variation of ~.

One can characterize geodesics as solutions to a variational problem.

Lemma 2.3.10 ([25], Lemma B.1). Let ¢ be a variation of vy with fized endpoint

c(s,T) =~(T) for all s € [—¢,€]. Then denoting S = dc ()]

- Uc(s, ) = _/0 g (Ds%,S)dt.

Corollary 2.3.11. A curve v will be a geodesic if and only if it is a V-geodesic for

some (and therefore any) metric connection V.

2.3.2 Jacobi fields and the comparison principle

We are also interested in the properties of the field S = dc (%) for a variation of

geodesics. See [78] for a complete discussion of established results.

Lemma 2.3.12. Lety: [0,T] — M be a geodesic, and let c(s,t) be a geodesic variation
of v in the sense that for any fized s the map vs(t) = c(s,t) is a geodesic. Then

S =dc (d%) will satisfy the Jacobi equation

D;D3S + R(S,4)7 =0

where R is the Riemann curvature tensor associated to D.

Proof. See [35], 06]. O
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In light of this, we define the Jacobi operator

Z(W) = DsDsW + R(W, )7

We say that a vector field W solving Z(W) = 0 is a Jacobi field. By lemma [2.3.12
the variational field S = dc (%) associated to a geodesic variation ¢ must always be a
Jacobi field; this suggests that we can determine controls on the behavior of geodesics

by that of Jacobi fields.

Theorem 2.3.13 (Comparison Theorem). Let (M, g) be a Riemannian manifold
equipped with g-metric connection V. Let v,z € M, and suppose we have the fol-

lowing:

o A unit speed geodesic vy: [0,T] — M joining x = v(0) and T = v(T) that is

length minimizing on the entire interval [0, T].
o A Jacobi field V for D =V + J such that V(z) = 0.

Defining the distance function r(y) = d(x,y) (in particular r(y(t)) = t), it will hold

that for any vector field W such that W|, L % and agreeing with V at x and Z,
Hess”(r)(V, V) < g(W, D; V)

when both sides are evaluated at T, with equality if and only if W =V is a Jacobi
field.

Proof. We refer to [25] for the complete result, but the essential idea is to compute
the Hessian at 7(7') as the integral of a curvature quantity determined by a Jacobi

field vanishing at ~(0) along .
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Lemma 2.3.14. Let (M, g) be a Riemannian manifold equipped with g-metric con-
nection V. Let x,& € M, and suppose v: [0,T] — M is a unit speed geodesic joining
x = (0) and T = y(T) that is length minimizing on the entire interval [0,T]. Let
w € TeM such that w L 4(T'). Then

Hess? () (w, w) = /O ! <g(Dﬁv, DV) — R(V,#,4, v>> dt

Where V' is the unique Jacobi field along ~y for D with V(x) =0,V (z) = w.

One then shows by a variational argument that the index
T A
IW) = [ (oD D)~ ROVA5.9) ) e
0

is minimized by Jacobi fields, and from the theorem follows from the uniqueness of

the ODE determining the appropriate Jacobi field. O



Chapter 3

H-type Foliations

Much of the content of this chapter overlaps with a paper coauthored with Baudoin,
Grong, and Rizzi in 2018. For the complete proofs of those results we will refer to
the original paper [24].

In this chapter we discuss a class of sub-Riemannian manifolds introduced in
[24] that are equipped with a Riemannian foliation; these complementary directions
determine a Clifford module that has geometric consequences for the sub-Riemannian
structure, and it can be shown that these results hold independently of the choice
of Riemannian complement. This can be viewed in some sense as a more geometric
implementation of the Eulerian approach to sub-Riemannian geometry initiated in
[21]. The remainder of the thesis will be dedicated to the study of the sub-Riemannian

geometry of these objects.

20
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3.1 Motivation

We begin by examining several coincident ideas that motivate the definition of H-type
foliations. In particular, we will look at the H-type groups originally introduced by
Kaplan and the complementary notion of Clifford structures that naturally arise in

this setting.

3.1.1 H-type Groups and Algebras

In [74] Kaplan introduced a family of two-step nilpotent Lie groups motivated by the

study of hypoelliptic Laplacians.

Definition 3.1.1. Suppose n = v @ 3 is a real Lie algebra with Lie bracket [-,]
satisfying

[b,0] €35, [v,3]=[5,3]=0.

Suppose moreover there is a scalar product (-,-) on G. Then defining J: 3 — End(v)
by
(JzX, X"y =(Z,[X, X])

the algebra is called H-type if
Jz = —l1Z]"1d

Kaplan explores these spaces further in [75] [76]. In particular one can consider
the Clifford algebra Cl(3) defined as the tensor algebra T'(3) modulo the relation

rT®y+y®r=—2(x,y)ld. Because of the relation

Jodoy + oy = —2(21, 29)1d
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the universal property of Clifford algebras (see [38, BI] for fundamental notions)
implies that the J map can be extended to J: Cl(3) — End(v). There is a complete
classification of these algebras by dimension, and their properties are well-known.
The Lie groups associated to H-type algebras are natural candidates for the con-
sideration of sub-Riemannian geometry, as the Lie algebra describes the tangent space
and we can thereby expect a natural notion of sub-Laplacian. In particular, the sim-
plest nontrivial sub-Riemannian geometry, the Heisenberg group (definition
falls under this category. Further consideration of these spaces has been extensive,

see for example [52], 45].

3.1.2 Clifford Structures

There is a natural way in which we can describe the action of a Clifford algebra acting

on a Riemannian manifold.

Definition 3.1.2. A rank r Clifford structure on a Riemannian manifold (M, ¢g) is an

oriented rank r Euclidean bundle (E, h) over M together with a non-vanishing algebra

bundle morphism, called a Clifford morphism, ¢ : C1(E, h) — End(TM) which maps

FE into the bundle of skewsymmetric endomorphisms of 7M.

These structures naturally encompass the extension of the Kaplan J map. In [89],
Moroianu and Semmelmann completely classify the possible parallel Clifford struc-
tures over simply-connected Riemannian manifolds by rank, where such a structure
is considered parallel if it is preserved by the Levi-Civita connection (as described in
section . In particular, there is a strong relationship between the properties of

the Clifford algebra and the Riemann curvature tensor.
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3.1.3 Model Spaces for Curved Sub-Riemannian Manifolds

Considering the natural Clifford algebra arising from H-type groups and the well-
understood Clifford structures on Riemannian manifolds, it seems a natural pro-
gression to consider the possible generalization of Clifford structures to the sub-
Riemannian setting in which the horizontal distribution locally models an H-type
algebra. This was moreover suggested by [2I, Remark 2.25].

In particular, there is an ongoing project in the field of sub-Riemannian geometry
[68, 100, 5l [84] 211, 22], 104, 4 [62] exploring appropriate generalizations of curvature. If
one hopes to accomplish comparison results (as discussed in section it is necessary
to establish model spaces of sub-Riemannian geometry analogous to the Euclidean
space, sphere, and hyperbolic space of Riemannian geometry. Importantly, it should
be the case that there is a unifying theory justifying the appropriateness of these
spaces as models for comparison. One possible approach is suggested by the notion

of H-type foliations.

3.2 H-Type Foliations

Let (M, H,g) be a totally geodesic foliation with adapted bundle-like metric g =
g1 ® gy. Denote by V the Bott connection. For each Z € T'(TM) we define an

endomorphism J; € End(I'(TM)) dual to the Bott torsion
Sz X = T"(er X, pry, -, pry Z)ﬁ

or equivalently,

gn(JzXY) = gv(Z,T(X,Y))
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for all X,Y,Z € [(TM).

Remark 3.2.1. Notice that the J map introduced here is the same as the J tensor
defined in eq. and which was used for determining the existence and uniqueness
of connections; this follows from the expression T'(X,Y) = — pry,[pry, X, pry, Y]. This
will fail to be true for foliations that are not both totally geodesic and have bundle-like

metric, which partially motivates including these conditions in our definitions.

With this, we can define a structure generalizing Kaplan’s H-type groups, intro-

duced in [74].

Definition 3.2.2. We say that (M, #, g) is an H-type foliation if for every Z € I'(V)

the map Jy is an isometry; equivalently,

9(J2X, J2Y) = | Z|I*9(X.Y) (3.2.1)

for all X,Y € ['(TM).

Equation (3.2.1)) will be called the H-type condition. It is a generalization in the

sense that it allows for a notion of his J map on sub-Riemannian manifolds defined

by foliations.

Remark 3.2.3. Note, some standard presentations of sub-Riemannian manifolds
with natural foliations will not be H-type groups, such as the Hopf fibration with the

standard metric on the sphere, as we have instead the property

9(J2zX, JzY) = M| Z|*g(X.Y)
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for some fixed A > 0. In this case we can renormalize the metric as g = gy & % gy and

thereby recover an H-type foliation.

We further distinguish H-type foliations by the behavior of the Bott torsion under

covariant differentiation.

Definition 3.2.4. e If all horizontal covariant derivatives of the Bott torsion van-

ish we say (M, H, ¢g) has horizontally parallel torsion and we write V4T = 0.

e If all covariant derivatives of the Bott torsion vanish we say (M, H, ¢g) has com-

pletely parallel torsion and we write V1" = 0.

To exemplify the importance of these definitions, we note the following lemma

that will be used often.

Lemma 3.2.5 ([24], Lemmas 2.6 and 2.7). Let (M, H, g) have horizontally parallel

torsion. Then,

o (VxJ)y =—=(VyJ)x, and

o R(X,Y)Z =Ry(X,Y)Z + Ry(X,Y)Z + (V;T)(X,Y)
for all X,Y,7Z € T'(TM), where we define

Ry (X,Y)Z = R(pry X,pry, Y)pry, Z

RV(X> Y>Z = R(prv X, PTy Y) pry Z.

Remark 3.2.6. The lemma remains true for totally-geodesic foliations with bundle-

like metric even in the absence of the H-type condition.
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Proof. The proof of the lemma is an interesting exercise in considering the symme-
tries of the Riemann curvature tensor. In particular, the second claim is proved by
decomposing R into terms for each possible projection of components. Applying the

first claim, expanding as V = V9 + A, and using the Bianchi identity we find that
g(RX, V)V, W) = g(R(V, W)X, Y) = g(VvT)(X,Y), W) = g(VxT)(V,W),Y)
Considering the possible projections, the lemma is proved. We refer to [24] and [22,

Lemma A.1] for the details. O

In the following we will denote J; = Jz, and Ji; = Jz,Jz,, and Jy, = Jz,J7,Jz,

for succinctness.
Lemma 3.2.7 (Basis Lemma). Let (M, #,g) be an H-type foliation, and denote

n = rank(#H). Suppose B = {X1,...,X,} is an orthonormal basis for H,. Define

spany, (X) = {X, Jz X}
SpaIthZ2 (X) = {X, JlX, JQX, J12X}
spany, 7, 7. (X) = {X, 1X, X, J1oX, J3X, J13X, Jo3 X, J1o3 X }.
We have the following:

1. For any unit Z € V, the set {JzX1,...,JzX,} is an orthonormal basis for H,.

2. n 1s even, and n > m + 1. Write n = 2k. For any unit Z € V, there exists
a subset {X1,..., X} C B so that the set Ule span,(X;) is an orthonormal

basis of H,.
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3. If m > 2 then n = 4k. There exist orthogonal unit Z,,Zy € V, and a subset

(X1,..., X} C B such that X, spany, z (X;) is an orthonormal basis for H,.

4. If m > 4 then n = 8k. There exist orthogonal unit Zy, Zy, Z3 € V,, and a subset
{(X1,..., X} C B such that U, spany, z, 7.(X;) is an orthonormal basis for

H,.
5. Ifn=m+1 thenn = 2,4, or 8.

Proof. The first claim follows from applying the skew-symmetry of J to see that
g(Jz X, X) = —g(X,JzX)=0.
The second claim is established by observing that for any XY € H,Z € V,

span,(X) is linearly independent and moreover one of the following holds
e span,(X) = span,(Y), or
e span,(X) Nspany,(Y) = {0}.

For an appropriate choice of X; € B the claim follows.

If m > 2, fix orthogonal Zy,Z, € V. Then the set Spangz, z,(X) is linearly
independent and we have an analogous statement the the last case.

If m > 4 then we can always choose orthogonal 7, Z,, Z3 € V so that for X € H
the set spany , , (X) is linearly independent and we again have analogous state-
ment.

The final claim follows from the previous three. O

The proof could proceed more elegantly by considering the Clifford algebras CL(V).

We will take this perspective in the following section.
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Remark 3.2.8. For m = 3, we note that for orthogonal Z;, Z5, Z3 € V it can hold
that Jio = J3, which is why m = 3 does not imply n = 8&. When this occurs, we
say that the J? condition is satisfied; we call the particular case m = 3 quaternionic.

This will be made precise by definition [3.2.16|

3.2.1 H-type submersions

Definition 3.2.9. Suppose 7: (M, g) — (B,j) is a Riemannian submersion with
totally geodesic fibers and (M, H, g) is an H-type foliation with horizontally parallel
torsion, where H is the horizontal space of m. We will call (M, H,g,7) an H-type

submersion.

In fact, the Heisenberg group, the Hopf fibration, and the Anti-de Sitter fibra-
tions (which we define in section are all H-type submersions. We were able
to classify all simply connected H-type submersions in [24] theorem 3.15] with par-
allel horizontal Clifford structures (defined in section by consideration of the
analogous classification [89] of Clifford structures on Riemannian manifolds.

To understand this, we recall the notion of curvature constancy:

Definition 3.2.10. For p € R, the p-curvature constancy of a Riemannian manifold

(M, g) is the subbundle of TM given at p € M by

Co(p,g) ={veT,M: R(v,z)y = p(g(x, y)v — g(v,y)x) for all z,y € T,M}

for the Riemann curvature tensor R associated to the Levi-Civita connection.

Gray [60] defined this as one component of a decomposition of the tangent bundle

in terms of the behavior of the Riemann curvature tensor. This space is totally
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structure and x > 0.

| M | B | Fiber | rank(H) | rank(V) |
Twistor space Quaternion-Kahler with | S? 4k 2
positive scalar curvature
3-Sasakian Quaternion-Kahler ~ with | S? 4k 3
positive scalar curvature
Quaternion- Product of two quaternion- | RP3 4k 3
Sasakian Kahler with positive scalar
curvature
Sp(¢t+1)xSp(q—+1) + - 3 _
Splzqi)xsp(q?)iSp(l) HPT > HPY S A" +a7) 3
Sp(k+2) Sp(k+2) 4
Sp(k)x S%)II’IES) Spé%?ks-igl()z) S 8 4
5
e G SR el DR
7
SO(k)xSpin(7) SO(k)xSO(8) RP" 1 8k, k > 3, 7
k odd
Spin(k+8) SO(k+8) 7 _
SO(II:)xspin(n SO(k)xSO(8) S 8k, k=1, 7
k even
Exceptional cases
12 — 2 8
Wég) Spln( E) opP 2 Sg 16 8
—spin(szluu) Sp‘““g) =(Ce0O)P S 32 9
2 11
SpiE(H;SU(Q) Spll’l(12§SU( 2) (H ® @)P S 64 11
2 15
TABLE 3.2.1: [24] Table 1] H-type submersions with a parallel horizontal Clifford

geodesic and determines a bundle-like metric under our conditions, and in particular,

one recovers the equivalence

Theorem 3.2.11 (|24, Theorem 3.11, Remark 3.12]). Let (M, H,g) be a totally
geodesic foliation with bundle like metric and let K # 0. The following are equiv-

alent:
oV, CCy(K,g) for all p € M.

o (M, H,gn® ﬁgy) 15 an H-type foliation with parallel horizontal Clifford struc-
ture with k = 2K.
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From this we can arrive at the key result.

Theorem 3.2.12 (|24, Corollary 3.14, Theorem 3.15]). Let (B, j) be an n-dimensional
Riemannian manifold carrying a rank m + 1 parallel nonflat even Clifford structure
in the sense of Moroianu-Semmelmann [89] with n # 8. Then the sphere bundle
S™ — M — B is an H-type foliation with parallel horizontal Clifford structure. In
particular, restricting to the case of submersions we can conclude that [24), Tables 1

€9 2] gives the complete list of H-type submersions with k # 0.

We refer to [24] for the proofs. The essential observation is that the parallel
horizontal Clifford structures we introduce and the parallel Clifford structures of [89]
are analogous for this construction as follows from theorem [3.2.11] and as such the
classification [89, Theorems 3.6 & 3.7] will give us the result. We reproduce table[3.2.1]
giving the classification for x > 0 for completeness.

These constitute an important class of H-type foliations, as any foliation is locally
a submersion remark and so local properties of H-type foliations are determined

by these examples.

3.2.2 Structure of Cl(V) — End(H)

In this subsection we are interested in examining more closely the algebra gener-

ated by the horizontal endomorphisms Jz. Recall the notion of H-type algebra from
section B.1.11

Lemma 3.2.13. Let (M, H,g) be an H-type foliation. Then for every p € M the

tangent space T,M is an H-type algebra.
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Proof. The proof follows immediately from consideration of the H-type condition

eq. (3.2.1) pointwise. O

By a polarization argument, we see that for all Z;, Z, € V we have the Clifford
relation

JZ1J22 + JZQJZ1 = —g<Zl, ZQ)Id

By the universal property of Clifford algebras we can extend the map J: I'(V) —
End(I'(#)) defined by Z — Jz to a representation of Cl(V,) for p € M. In par-
ticular, at any p € M such a map can be uniquely extended into a bundle algebra
homomorphism from the Clifford algebra C1(V,) to the algebra of horizontal endo-
morphisms End(#,), where the product on End(#,) is given by composition. That
is
J1 =1dy and J,., = JyJy.

We make the identification A?V = Cly(V) C CI(V) obtained through the canonical
isomorphism Z) A Zy — Zy - Zy + (Z1, Zs).

In the remainder of this section, we consider various properties of this homomor-

phism.

Quaternionic Structures
We first consider the algebra generated by the J maps. That is,

Definition 3.2.14. Let (M, H, g) be a H-type foliation. For p € M, denote by a(p)

the Lie sub-algebra of End(#,) generated by the J,, z € V,.

It turns out that there are relatively few possibilities, and these are strongly

determined by V.
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Lemma 3.2.15 ([24, Lemma 2.12]). Let (M, H, g) be an H-type foliation. Let p € M.
Consider End(H,) as a Lie algebra with commutator brackets. One of the following

holds:
(i) m=1anda(p) ={J.: z€V,} =R;
(ii) m=3 and a(p) ={J,: 2 € V,} = s0(3);
(ili) m > 2 and a(p) = { Tz, [Jors o)t 21,22 €V} Z s50(m + 1).

Proof. We refer to [24] for the proof, but observe that the key consideration is that
for m = 3 it can hold that for orthogonal 21, 29,23 € V, that Ji2 = Js; this is case
(ii). If m > 2 and (ii) doesn’t hold then the J, do not form a Lie algebra without the
brackets [J.,, J,,].

O

Case (ii) is often singular in proofs to follow in a manner that is somehow analogous

to the case of self-dual Einstein manifolds; we therefore distinguish it.

Definition 3.2.16. Let (M, H,g) be an H-type foliation. We say that (M, H, g) is
of quaternionic type if case (ii) of lemma [3.2.15| holds.

Remark 3.2.17. For H-type foliations of quaternionic type it must be that the field
A(p) = {J.: z € R® V} is field isomorphic to the quaternions, which motivates the

name.

While the definition of a(p) is only sensible pointwise, it turns out to be indepen-

dent of the choice of point.

Lemma 3.2.18 ([24, Lemma 2.13]). Let (M, H, g) be an H-type foliation with hori-

zontally parallel torsion. Then for any p,q € M, a(p) is isomorphic to a(q).
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Proof. Since Vy.J = 0 follows from the horizontally parallel torsion, the V-parallel
transport along any horizontal curve connecting p to ¢ induces a Lie algebra isomor-

phism a(p) = a(q). O

The J? condition

Instead of examining the Lie algebra a, we can consider instead a condition on the

composition of J maps.

Definition 3.2.19. Let (M, H,g) be an H-type foliation. We say that the J? con-

dition holds if for any orthogonal Z;,Z, € I'(V) and X € I'(H) it holds that there

exists a Z3 € I'(V) such that

I dnX = Jz X

It should be emphasized, Z3 can depend on Z;, Z5, and X, and so this does not

imply that a(p) form a subalgebra of End(#,). However,

Lemma 3.2.20. Let (M, H, g) be an H-type foliation with horizontally parallel torsion

and satisfying the J? condition. Then one of the following occurs:
e m=1,H,=C"?
o m =3, H, = H
e m="7 H,=0

for each point p € M.

Proof. Tt is known from [52] [45] that the J? condition for H-type algebras implies the
theorem for each p. The lemma follows from lemma |3.2.18| ]
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Parallel Horizontal Clifford Structures

We can also consider how the Bott connection V can interact with the J maps. In

particular, we have the following definition.

Definition 3.2.21. Let (M, H, g) be an H-type foliation with horizontally parallel

torsion. We say that (M, H, g) is an H-type foliation with parallel horizontal Clifford

structure if there exists a smooth bundle map ¥ : V x V — Cly(V) such that for

every Zy,Z, € T'(V)

(V2. )z, = Jw(z,,2,)-

Essentially, the existence of a parallel horizontal Clifford structure is equivalent to
the existence of a subgroup of End(#) (isomorphic to C1(V)) preserved by horizontal

parallel transport. We defer consideration of this idea to section [3.4]

3.2.3 Curvature Dimension Inequalities

Curvature Dimension Inequalities

In Riemannian geometry there are many results that depend on a lower bound on

the Ricci curvature; that is, we say that p € R is a lower Ricci curvature bound on a

Riemannian manifold (M, g) if it holds for any X € TM that

Ric(X, X) > pg(X, X).

These go back as far as [37]; standard references such as [59, 06, [77, 80, 83, 1T6] give

plethora examples.
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It was shown in [9] that a lower Ricci bound Ric > pg is equivalent to the statement

IV?fII* + Rie(V £, Vf) = —(Af)* + ol VfII?

S|

for any f € C°°(M), where M has dimension n. Remarkably many classical Rieman-
nian results relying on Ricci lower bounds can be derived directly from this, using
purely analytical considerations.

Bakry, Ledoux, and their coauthors [10], 82] generalized this idea, allowing for a
recovery of many of these classical Riemannian results on spaces that don’t have a
natural notion of curvature. In particular, they associate to a smooth, second-order

diffusion operator L with real coefficients satisfying L1 = 0 the symmetric forms

(L(fg) — fLg - gLf>
(LT(f9) = T(f, Lg) = T(g, Lf))-

I'(f,9) =
FQ(f? g) =

N — N~

In the particular case L = A, the Riemannian Laplacian, we see that
L(f) =T H=IVAP  Taf) =Talf, f) = IV fI* + Ric(Vf, V)
and we can rewrite the inequality as

Da(f) 2 = (L) + ().

This is referred to as the curvature dimension inequality C'D(p,n). As in the special

case of Riemannian manifolds, this condition allows for the recovery of a wide array

of results from purely analytical considerations.
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On an H-type foliation (M, H, g) we define the sub-Laplacian A,g as the generator

of the symmetric closable bilinear form in L*(M, p,):

En(u,v) = / (Vau, Vyv) dpg, u,v e C5°(M)
M

where the horizontal gradient V4 denotes the projection of the Levi-Civita connec-
tion VY onto H. We define similarly the vertical gradient V. The bracket-generating
condition on ‘H implies A is locally subelliptic [69], and completeness of the Rie-
mannian metric g implies Agp is essentially self-adjoint on C§°(M) [17].

We also define the horizontal Laplacian Ay as the horizontal trace of the Ricci

tensor; that is

Ay f =) Hess(f)(X;, X,)

i=1
for an orthonormal basis X; of H. On H-type foliations the Riemannian measure f,
is proportional to the intrinsic Popp’s measure, and so Ay and A, coincide [13].

Unfortunately, setting L = Ay, it is too much to hope that a curvature dimension
inequality will hold; this can be seen as a consequence of lemma [1.2.3] Address-
ing precisely this deficiency, Baudoin and Garofalo introduced in [21] the following
generalization.

Say a symmetric bilinear form I'? : C°°(M) x C*°(M) — R is admissible if it obeys

the following conditions:

(i) There exists an increasing sequence hy € C§°(M) such that hy 1 on M and

IT (B ||oo + [ITZ (Bi) || oo — O as k — oo.
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(ii) For any f € C°(M) it holds that T'(f,TZ(f)) = T'Z(f,T(f)).

Denote

Lolf,0) = 5 (L0(1,9) = TS, Lg) = T(g, L1)),

Definition 3.2.22. We say that M satisfies the generalized curvature dimension in-

equality GC'D(p1, p2, k,n) with respect to L and admissible I'Z if there exist constants

p1 €ER, ps >0,k>0,and 0 < n < 400 such that

Do(f) + 0I5 (f) = (L2 + (o1 = = ) T(F) + pal“(f)

S|

holds for all f € C*(M) and v > 0.

Notably, the bilinear map I'? is not intrinsic to the space being considered. In
fact, on a Riemannian manifold (M, g) setting L = A, 'Y = 0,k = 0 we recover the
curvature dimension inequality C'D(py,n).

We will define on H-type foliations

I'?(f,9) = g(Vvf,Vyg)

and so we see that I'Z is a measure of the contribution of V; considering that we are
interested in a sub-Riemannian result, it’s sensible that this should not be expected
to be intrinsic.

Importantly, it has been shown that on a sub-Riemannian manifold satisfying the
generalized curvature dimension inequality that many important Riemannian results
can be recovered analogously to the curvature dimension inequality; in particular the

GCD is known to imply the following:
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Li-Yau type inequality

Scale-invariant parabolic Harnack inequality

Off-diagonal Gaussian upper bounds

Liouville-type theorem
e Bonnet-Meyers diameter bound

Essentially, we can regard the GC'D(py, p2, k,d) as a candidate for replacing a lower
Ricci bound. For full details, see [21], [1§].
We will proceed to show that on H-type foliations a generalized curvature dimen-

sion inequality holds given a lower bound on the horizontal Ricci curvature.

Theorem 3.2.23 (|24, Proposition 2.20)). Let (M, H, g) be a complete H-type folia-
tion, and denote n = rank(#H), m = rank(V). If there exists a constant p € R such

that Ricy > pgy, then the GC'D(p, %, m,n) is satisfied.

From physics, there is a notion called the Yang-Mills property that we will need.

We see that all H-type foliations naturally satisfy it.

Lemma 3.2.24 ([24, Theorem 2.17]). Let (M, H,g) be an H-type foliation. Then

(64T) = Try(VET)(x, ) = 0.

We say that (M, H, g) is Yang-Mills.

Proof. Let p € M be arbitrary. Let Z € V, be a unit vector and Xi,...,X,, be an
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orthonormal basis of H,. By lemma sois JzXy,...,JzX,. ForY € H,,

9(Try(VT)(x,Y), Z) = Zg((VJZXiJ)ZJZXmY)

== 9(Vx,J)zX;,Y)

i=1

= —g(Tru(VT)(x,Y), Z).

Where we use the fact that for Z € T'(V),
(VixJ)zJzX = —HZHZ(VXJ)ZX

which follows from a clever application of the Bianchi identity [24, lemma 2.18]. We
see then that 04T = Try(VT)(x, -) = 0 and so the foliation is Yang-Mills. O

Proof of theorem|[3.2.25. We first define

n

R(f) = Ric(Vof, Vouf) = (BTN (Vo) + 5 S (T(Xe Xe) )P

k=1

S(f)=-2>_ g(Vx, Vo f, T(Xi, Vi f))

i=1

T(f) = Z | T (X, Varf)|I?

where the X; are any orthonormal basis of H.

Lemma 3.2.25. On a sub-Riemannian manifold (M, H, gy;) with n = rank(H), the

system

R(f) > piT(f) + p2l2(f),
T(f) < KT(f)
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implies that GC'D(py, p2, k,n) holds for the sub-Laplacian Agg.

Proof. This is [21, theorem 2.19]; first one shows that there hold Bochner-type for-

mulas

Lo(f) = IV3SIP +R(f) + S(f)

L3 (f) = IVa Vv I,

which can be computed explicitly in an adapted frame. The lemma then follows from

several clever applications of Schwarz’ inequality. O]

We can expand T'(Xy, Xi) = >0 gu(Jz,Xe, Xi)Z; for an orthonormal basis Z;

of V, and so
S (TXe, X)) =D (gn(JoysXe, Xi)? =0l Vyf]2 (3.2.2)
Lk=1 £,k=1

By lemma we see that the horizontal divergence of the torsion d4 7 vanishes,

and together with eq. (3.2.2) this implies

n

R(f) 2 oT(f) + JT(F).

Finally, we expand

T =3 gn Tz, Vad. X)||* = Y 192, V|12 = mI(f)
j=1

i=1 j=1

for an orthonormal basis Z; of V. With lemma [3.2.25| this completes the proof. [
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Remark 3.2.26. We see that for the curvature quantity

n

R(f) = Ric(Vuf, Vouf) — STV} + 5 3 (T (X0 Xi) 1)

the only term with both vertical and horizontal derivatives is the horizontal diver-
gence (64T)(Vaf)f; the fact that this vanishes on Yang-Mills manifolds is the es-

sential reason why we can separately bound the horizontal and vertical derivatives in

lemma [3.2.25]

Remark 3.2.27. As shown in [21, theorem 2.20], the system of lemma [3.2.25| is
actually equivalent to GC'D(p1, pa, k,n), but this takes significantly more work to

show.

We list some immediate results for H-type foliations that follow from established

consequences of the generalized curvature dimension inequality.

Corollary 3.2.28 (|24, Corollary 2.21]). Let (M, H, g) be a complete H-type foliation
with Ricy > pgy for some p € R. Let us denote by d.. the Carnot-Carathéodory

distance.

1. If p > 0, then the metric measure space (M, d.., 1) satisfies the volume dou-
bling property and supports a 2-Poincaré inequality, i.e. there exist constants
Cp,Cp > 0, depending only on p,n,m, for which one has for every p € M and

every r > 0:

M(B<p7 27”)) S CYD N(B(pa 71))7

/ |f = fBPdug < Cpr2/ IV f (1 dpg,
B(p,’f‘) B(p,’f‘)
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for every f € CY(B(p,r)), where we have let fg = j1g(B)~" [ fduy, with B =
B(p,r).

2. If p > 0, then M is compact with a finite fundamental group and

diam(M, d..) < 2\/§7r\/ (n+ 4”22” +6m)

3. If p > 0, then the first non zero eigenvalue of the sub-Laplacian —Ay satisfies

np
AN > —
1_n—i-3m—1

Proof. Point 1 follows from [I8, Theorem 1.5], and Point 2 from [21, Theorem 10.1]

or [I7, Theorem 6.1] for a simpler proof. Point 3 follows from [17, Theorem 4.9]. [

3.3 Some specific H-type Foliations

In this section we make explicit some important examples of H-type foliations, both
to demonstrate the considerable number of sub-Riemannian spaces included by this
definition as well as to provide the reader with a reference point by which to think of

these structures.

3.3.1 Heisenberg Groups, Hopf fibrations, and Anti-de Sitter
Spaces

The prototypical example of a sub-Riemannian manifold is the Heisenberg group,

associated to flat Euclidean space.
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Definition 3.3.1. Let R?*"! with coordinates (x1,...,Tn, ¥1,- ., ¥n, 2) be equipped
with the foliation

R — R?"tL Iy .

where V tangent to the fibers is generated by Z = 0, and define a transversal hori-

zontal distribution H = span{ Xy, ..., X,,Y:,...,Y,}, where
1
XZ' = 8% - —yiaz }/z = 8%. + Eacﬁz

Defining a Riemannian metric g so that the vectors X;,Y;, Z are orthonormal, we

have that (R, H, g) is an H-type foliation called the Heisenberg group.

This object (for n = 1) is the original motivation for the notion of H(eisenberg)-
type groups [76] [79]. It arises naturally in physics, as horizontal curves in this space
describe the motion of electrons through an electric field. From the sub-Riemannian
perspective, we see this as the model “flat space”. There are many references, see
e.g. [88,[45]. The thesis [90] explicitly describes foliations of the Heisenberg group.

The notion of curvature on H-type foliations (or sub-Riemannian geometry more
generally) is subtle; we will explore throughout the rest of the thesis. There are two
other particular H-type foliations that we want to keep in mind as models of positive
and negative curvature.

To model positive curvature we have the Hopf fibration, associated to the sphere

52n+1

Definition 3.3.2. Identify S***! with the set of points z € C"™! with ||z]| = 1.
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There is a natural S! action on S?"*! given by

(’Zla s 7ZTL+1) = (ewzlv cry ewzn-‘rl)

which induces the submersion

St g2t I Ccp.

we have that (52" H, g) is an H-type foliation called the complex Hopf fibration or

sometimes the CR sphere. See [55, 95] for more details; in [27] the heat kernel for the

sub-Laplacian is explicitly computed.

Analogously we have the model of negative curvature, the Anti-de Sitter space,

associated to the hyperbolic space H?"*!,

Definition 3.3.3. Identify H*"™! with the set of points z = (z1,...,2,41) € C*""!

with [[2]la = 220 |21 — |20 [|* = —1. We have the natural S* action
(21, 2ng) = (€21, €20 41)
which induces the submersion
Sty g2 T C

we have that (H?"™1 H, g) is an H-type foliation called the Anti-de Sitter (AdS) fi-

bration. For more details see [43], 49, ©95]; in [112] a heat kernel for the sub-Laplacian

is explicitly computed.
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We can analogously extend these constructions to the quaternions and octonions

as in table 3.3.1]

’ Manifold \ Fibration \ References ‘
Quaternionic Hopf fibration S3 ey SAnTS 5 HP | [29)
Quaternionic Anti-de Sitter fibration | S® < H*™ — HH" | [43] [20]
Octonionic Hopf fibration ST— S5 - QP! [94] [19]
Octonionic Anti-de Sitter fibration ST— HY — OH! [43]

TABLE 3.3.1: Model Quaternionic and Octonionic fibrations

Notice, because of the rigidity of the octonions, their associated fibrations can

only exist over OP! and OH*!.

3.3.2 Contact and 3K-Contact Manifolds

Recall definition [2.2.6 a 2n 4 1-dimensional manifold M equipped with a differential

form 7 such that n A (dn)™ is a volume form is called a contact manifold.

Proposition 3.3.4. Let (M, n, g) be a contact manifold with compatible Riemannian
metric. Define H = kern. Then (M, H,g) is an H-type foliation up to a choice of
normalization, see remark[3.2.3.

This follows from the fact that the nonvanishing condition on nA (dn)™ is precisely
the necessary condition for H to be bracket-generating, see [69]. The first examples of
the last section fall under this category. Specifically, we have the contact structures
in table

We can extend the idea of these constructions to the case rank()) = 3 by con-
sidering 4n + 3-dimensional manifolds equipped with an R3-valued differential form

n = (n1,m2,7n3) constructed from a triple of contact forms. This is analogous to the
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‘ Manifold ‘ Contact Structure ‘
1 n
Heisenberg group R?*7+1 n=dz— = Z(midyi — yidx;)
25
. n+1
. 1 __ N
Complex Hopf fibration S+ | n = 3 Z (zjdz; — z;dz;)
j=1
Anti-de Sitter fibration H*** | 5 = % (Z (Zdzj — Zde) — (Zax1dzng — Zn+1d2n+1)>
=1

TABLE 3.3.2: Contact structures on model fibrations

situation of definition [2.2.26] Under suitable compatibility conditions we recover 3K-
contact manifolds [72] [I0§], especially the Quaternionic Heisenberg group, and the
Hopf and Anti-de Sitter fibrations as in table [1.3.1]

3.3.3 Twistor Spaces

Because contact structures naturally generate a representation of the complex num-
bers, quaternions, and octonions, these will only give examples in co-dimension 1, 3,
or 8. However, H-type foliations do allow for m = rank(}) to take any dimension. In

the case m = 2, we have the fascinating example of twistor spaces.

Definition 3.3.5. Let (B, j) be a quaternionic-Kéhler manifold [35, Chapter 14] of
dimension 4k > 8. Consider the subbundle £ C End(TM) spanned by a triple of
complex structures I, .J, K. Define an inner product gg by setting these structures to
be orthonormal, and fix p > 0. The subbundle Z C E determined pointwise as the

sphere of constant gg-radius p forms the twistor bundle over B

5?2y Z 5 B.
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This is explored in [65, 105], and analogous notions arise over projective and

hyperbolic spaces. These are H-type foliations, and appear on table [1.3.1}

3.4 Parallel Horizontal Clifford Structures

In this section, we consider the covariant derivatives of J; that is, we investigate what

can we understand of the structure of an H-type foliation from the properties of

(VxJ)y = (VxT)(-, 5, Y).

This is of particular interest because, as we will come to see, there is a relationship
between the Riemann curvature tensor and the covariant derivatives of Jz. As dis-
cussed in section [3.2.2] we can extend J to a representation J: C1(V) — End(#), and
thus the algebraic structure of C1(V) can influence the curvature properties of H.
We see that (VxJ)y vanishes in the case of completely parallel torsion; in the

case or horizontally parallel torsion the quantity is nontrivial only if X,Y € V. We

recall the identification A*V with Cly(V) from section and definition [3.2.21]

Definition 3.4.1. Let (M, H,g) be an H-type foliation with horizontally parallel

torsion. We say that (M, H, g) is an H-type foliation with parallel horizontal Clifford

structure if there exists a smooth bundle map ¥ : V x V — Cly(V) such that for

every Zy,Zy € T'(V)

(V2. )z, = Jw(z,,2,)-

Remark 3.4.2. If m = 1, then the parallel horizontal Clifford assumption is always
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satisfied with ¥ = 0.

This definition is motivated by the analogous notion of Clifford structure on Rie-
mannian manifolds; these were completely characterized by Moroianu and Semmel-
mann in [89]. We summarize the algebraic consequences for ¥ in the following theo-

rem.

Theorem 3.4.3 ([24, Theorem 3.6]). Let (M, H, g) be an H-type foliation with parallel
horizontal Clifford structure. Then there exists a constant k € R such that ¥ has the
form

U(u,v) = —r(u-v+ g(u,v)).
and the sectional curvature of the leaves of the foliation associated to V is constant
equal to k2. If the torsion is completely parallel, the leaves are flat.

From this we see that parallel horizontal Clifford structures are fairly rigid, and
thereby give significant information relating C1()) to the End(#) generated by the
Jz.

Proof. We refer to [24, theorem 3.6] for the complete proof, but remark that the the

essential steps are in recognizing that the symmetries
1. U(u,v) =—="¥(v,u);
2. U(u,v) -v+v-Y(u,v)=0.

hold for all w,v € V,. The form of ¥ follows from consideration of the possible
homomorphisms A*) — Cly(V) and showing that any other terms vanish due to the

symmetries. That 2 gives the vertical sectional curvature follows from

Sec(u Av) = g(R(u,v)v,u) = ||(VJ])yw||* = K
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for any orthonormal v, u € V, and unit w € H,,, where we applied the first result. [

3.4.1 H-type foliations with completely parallel torsion

We begin with the simplest case, that of H-type foliations with completely parallel
torsion. In this setting (Vx.J)y vanishes, and so we always have parallel horizontal

Clifford structure ¥ = 0.

Theorem 3.4.4 ([24, Theorem 3.8]). Let (M, H, g, ) be an H-type submersion with
completely parallel torsion, and let the base space (B, j) be simply-connected. Then

one of the following (non exclusive) cases occur:
e m =1, M is Sasakian, and B is Kdhler;
e m =2 orm =23 and B s locally hyper-Kdahler;

e m s arbitrary, M is an H-type group, and B is flat and isometric to a repre-

sentation of the Clifford algebra C1(R™).

Proof. We refer to [24] for the complete proof, but highlight here the essential idea
that since the sectional curvature of V vanishes and we have a global submersion we
can see that the maps J; € End(H) project onto parallel almost complex structures
Jz on B. Then for m = 1 we see that B is Kahler and for m > 2 we see that B is
locally hyper-Kéhler. When m > 4 considerations of holonomy force B to be flat and
the theorem follows as a consequence of theorem [4.1.6] and theorem [4.1.7] O

From this we see that the completely parallel torsion condition is rigid, and only
allows for the H-type groups in dimension m > 4. The following corollary holds by

observing that H-type foliations are always locally H-type submersions.
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Corollary 3.4.5 (|24, Corollary 3.9]). Let (M, H, g) be an H-type foliation with com-
pletely parallel torsion. If m > 2, then M is horizontally Ricci flat, i.e. Ricy = 0. If

m >4, then M is horizontally flat, 1.e. Ry = 0.

3.4.2 Horizontal Einstein property

Definition 3.4.6. Let (M, H, g) be a totally geodesic foliation. We say that (M, H, g)

is horizontally Einstein if there exists some constant A\ € R such that
Ricy(X,Y) = Agu(X,Y),

for all X, Y € I'(#H), where Ricy is the horizontal Ricci tensor of the Bott connection.

In this section, we prove the following theorem:

Theorem 3.4.7 ([24, Theorem 3.16]). Let (M, H,g) be an H-type foliation with a

parallel horizontal Clifford structure and m > 2. Then

o ifm#3orifm=3and (M, H,g) is quaternionic,
, n
Ricy =K (Z +2(m — 1)) 9H

e otherwise (when m = 3 and (M, H,g) is not of quaternionic type) then at any

point, H orthogonally splits as a direct sum HT & H~ and for X, Y € T(H),
, n Koo e e
Ricx(X,Y) = & <Z + 4) (X,Y) + Z(dmH* = dimH ) (o(X), Y),

where 0 = Idy+ & (—Idy-).
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Remark 3.4.8. In the special case m = 3, but M is not quaternionic, the splitting
H, = H ©H, is related to the case of self-dual manifolds in dimension 4. Notably,
Vyo = 0 and so the splitting is independent of the point p. In all other cases,

(M, H, g) is horizontally Einstein.

In the case m = 2, the fact that (M, #,g) is horizontally Einstein is related to
the fact that quaternion Kéahler manifolds are Einstein manifolds (see Berger [33],
Ishihara [71] or Besse |35, theorem 14.39]), and the algebraic structure of our proof
below somehow parallels the one of Ishihara and Besse (in the choice of a special

horizontal basis). The key lemma is the following:

Lemma 3.4.9 ([24, Lemma 3.18]). Let (M, H, g) be a totally geodesic foliation with

horizontally parallel torsion. For any X, Y € T'(H) and Z € T'(V), we have

[RH<X7 Y), JZ} = (VT(X,Y) J)z + Jv,T)(x,Y)-

Proof. Write the Hessian operator for V as V% = VxVy — Vy,y. Using that .J
is parallel in horizontal directions and that R(X,Y) = VX, — V3 x + Vixy), we
observe that for X,Y € I'(H) we have

R(X,Y)J = Vo)
However, for W € T'(H) and Z € T'(V), we can also write

(R(X,Y)J)zW = R(X,Y) ;W — JpxyyzW — JZR(X, Y)W

— Ry(X, Y)W — Jiw,myxnyW — JzRu(X, Y)W.

The result follows. O
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This gives us an important structural result in our setting.

Lemma 3.4.10. Let (M, H,g) be an H-type foliation with a parallel horizontal Clif-
ford structure and m > 2. Let Zi,...,Z,, be a local vertical orthonormal frame. It

will hold that

[Ry(X,Y), J]] = Xm: <<JjX,Y>Jij — (J,; X, Y)Jj>. (3.4.1)

j=1,ji

Proof. We first observe that from Lemma together with the parallel horizontal

Clifford structure assumption, one obtains that for every X,Y € I'(H),

[Bu(X,Y), Ji) = (Vo) )z + Jov,myy)

= —RJr(xY)Z+-r(xY),z) T IV, m)xY)

Then, we note that

j=Li#i
and that
Jv,mxy) = ZJ(VZ TYX,Y),2;)2; = ZJ<(VZ Nz, X2, = —K Z (Ji X, Y)J
Jj=1 J=1j#i
Combining the previous expressions completes the lemma. O

We will also need the following lemma in the case m = 3 and (M, #, g) is non-

quaternionic.
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Lemma 3.4.11 ([24, Lemma 3.19]). Let (M, H, g) be a totally geodesic foliation with
horizontally parallel torsion and m = 3. Let Zy, Zy, Z3 be a local orthonormal frame
of V. Then (M, H, g) is of quaternionic type if and only if Jz,Jz,Jz, € {—Ids,Idy}.
If (M, H, g) is not of quaternionic type, then o = Jz,Jz,Jz, is a non-trivial horizontal

isometry such that o* = Idy and that commutes with Jz,, Jz,, Jz,.
We reproduce the complete proof of theorem from [24].

Proof of theorem[3.4.7]. We fix i, and j # i. Note that .J;, J;, J;; satisfy the quaternion
relations, J? = J7 = J7; = J;J;Jij = —Idy. Choose a local orthonormal basis X of
H such that if X is in the basis, so are J; Xy, J; Xy, J;; X, (up to a =£ sign); this can
be done by lemma We then compute for X, Y € I'(H),

n

Ricy(X, JiY) = = (Ru(X, X0)JiY, Xo)

=1
= = Ru(X, Xe), J]Y, Xe) = > {(JiRu(X, X0)Y, Xo)
/=1 =1

== ([Ru(X, X0), J]Y, Xo) + Y (Ru(X, X,)Y, J;Xy) .
=1 =1

On one hand, one obtains from (3.4.1)):

3

([Ryu(X, X0), Ji]Y, X¢) _mz Z (JX XY, Xo) — <Jin,X4>(JjY,Xg))

(=1 (= 1] 1,571

- Z (JX TV — (X, JjY>)

J=1,j#i

=2k(m — 1)(J;X,Y).

On the other hand, noticing that the set of —J; X, ® X, and the set of X, ® J; X, will
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be identical as X, varies across the whole basis, one obtains

n n

; (Ry(X, X0)Y, JiX,) = % ; < (Ry(X, X0)Y, J:X0) — (Ru(X, JiX0)Y, X¢) )

1 n
=5 D> (Ru(X,Y) X, JiXo),
=1

where the second equality follows from Bianchi’s identity and symmetries of the cur-
vature tensor. It therefore remains to compute >, | (Ry(X,Y)X,, J;i X;). We use
the fact that the set of X, ® J; X, and the set of J; X, ® J;; X, will be identical as X,

varies across the whole basis to obtain

/=1 /=1

=D (BulX,Y) X0, J;Ji Xe) + (R X, Y)J; X, Ty Xo)

(=1

= Z (JiRo(X,Y) X0, Ty Xo) + (R (X, V) J; X, 35 Xo)

= Z [Ru(X,Y), J;] X0, Ji; X0) .

Now, from (3.4.1)):

n

> ([Ru(X,Y), Jj) Xy, Ji; Xo)
/=1

—KZ Z (JkXY T Xe, JyXe) — (JpX,Y) (Jng,JinQ).
(=1 k=1,k+#j

If k # 4, one has (J;, Xy, Ji; Xe) = 0 and if k =4, (J;1. Xy, J;;X¢) = —1. Therefore,
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one obtains:

n

Z ((Ru(X,Y), ;] Xe, Jij Xo)

/=1
= —rn(JXY) =k Y > (X Y) (e X0, T X0).
k=1,k#j (=1

The analysis of the sum >, , (J, Xy, J;;X,) will depend on m. If m = 2, then one
has >, (Jix Xy, J;;X¢) = 0, because one must have k = i. If m > 4, then one can
pick an index s which is different from ¢, j and k so that by using invariance of the

trace by a change a basis:

n n

Z (Je X, Ji; Xo) = (Jeds X, JijJs Xe) = — (JeXe, Jij Xe) -
—1 —1 =1

3

Therefore >, | (Jy Xy, J;jXy) = 0. Summarizing the above computations, one de-

duces that for i # j # k,

—2x(m — 1(JX,Y) = 5 X)Y), if m#3
Ricy (X, J;Y) =

Therefore, substituting Y by J;Y one concludes

‘ 26(m — 1I)(X,Y) + (X,Y), if m#3
Ricy(X,Y) =

4/£<X, Y) -+ %<)(7 Y> + <J1J2J3X, Y)T‘I‘H(JlJQJE‘)), Zf m = 3.

K
4

By denoting o = J;JoJ3, H* the 1 eigenspace of 0 and H~ the —1 eigenspace of o, one
can then concludes with Lemma [3.4.11] We note that 02 = Idy, thus Vyo =0. O
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3.4.3 Sub-Riemannian diameter and first eigenvalue estimates

Combining theorem |3.4.7| with the results of corollary |3.2.28| we obtain the following.

Theorem 3.4.12 ([24, Corollary 3.20]). Let (M, H, g) be an H-type foliation with a
parallel horizontal Clifford structure such that k > 0. Then, M is compact with finite

fundamental group. Moreover,

e Ifm # 3 orm = 3 and (M, H,g) is of quaternionic type then we have the

sub-Riemannian diameter bound

(n+4m)( n—|—6m)
(n+8(m—1))

diam(M, d..) < 4\/_\/_\/

and we have the following estimate for the first eigenvalue of the sub-Laplacian

S kn(n+ 8(m —1))
4 n+3m-—1

e Ifm = 3 and (M, H,g) is not of quaternionic type, then we have the sub-

Riemannian diameter bound

(n+12)(n + 18)
n(n + 8)

Y

diam(M, d,.) < 2\/_\/_\/

and we have the following estimate for the first eigenvalue of the sub-Laplacian
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Remark 3.4.13. Compare this with [97], in which it is shown that the estimate

TL7T2

N>
"= diam (M, d,.)?

holds, which is sharp and agrees with our result on the complex and quaternionic

Hopf fibrations.



Chapter 4

Holonomy of H-type Foliations

In this chapter we will explore the collection of endomorphisms of H, induced by
Bott-parallel transport around loops at a point p. This is an extension of the idea
of holonomy from Riemannian geometry, where it is well-known that the structure of

such groups has strong consequences for the geometry of the underlying manifold.

4.1 Riemannian holonomy

On a Riemannian manifold (M, g) equipped with a metric connection V, there is a
notion of parallel transport section given a curve 7: [0,7] — M and a vector
r € TyM, we say that a vector field X such that X (v(0)) = x and V5;X =01is a

parallel transport for x along . This induces a family of isomorphisms

7 (t): TyoM — T,mM

88
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for all 0 < ¢ < T'. In particular, if v is a loop at a fixed point p € M this gives an

endomorphism of 7, M.

Definition 4.1.1. We denote by Hol(M, p) the collection of endomorphisms of 7, M
induced by V-parallel transport along loops at p. This forms a group by composition,

and is called the holonomy group of M at p. Restricting to only the loops homotopic

to the constant loop at p, we have the restricted holonomy group at p, Hol’ (M, p).

Proposition 4.1.2. Let (M, g) be a Riemannian manifold with metric connection V.

o [f M is connected, Hol(M, p) is independent of the choice of p € M, and so we

write simply Hol(M).
e Fuvery element of Hol(M) is an isometry.
Proof. The proofs are straightforward, we refer to [77, chapter 2]. m

One can characterize the infinitesimal generators of the holonomy group in terms

of the associated Riemann curvature tensor.

Theorem 4.1.3 (Ambrose-Singer [8]). Let (M, g) be a Riemannian manifold with
metric connection V. For p € M, the Lie algebra hol(M, p) of Hol(M, p) is exactly
the sub-algebra of so(T,M) generated by the elements 7" o R(7yu, 7,v) o 7, where u,v

run through T,M and vy through C,.
Proof. This is explained thoroughly by [35], theorem 10.58, note 10.59]. ]

Remark 4.1.4. We emphasize a note made in [35], that this result remains true

without modification for any metric connection V.

We can also simplify the study of holonomy groups to those that are irreducible.
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Theorem 4.1.5 (deRham [53]). Let (M, g) be a complete, simply connected Rieman-
nian manifold. Then Hol(M) is reducible as a direct product if and only if (M, g) is

reducible as a Riemannian product.

Holonomy associated to Levi-Civita connection

In particular, the holonomy group Hol(M) associated to the Levi-Civita connection

is referred to as the Riemannian holonomy group; there is a complete classification

of the possible Riemannian holonomies, as follows.

Theorem 4.1.6 (Berger [33], Simons [106]). Suppose (M, g) is a Riemannian mani-

fold with irreducible Hol°(M). Then one of the following (nonexclusive) cases occur:
o M is locally symmetric and is of rank at least 2, or
e Hol(M) acts transitively on the sphere.

Simons’ proof [106] relies on the Ambrose-Singer theorem [4.1.3] One assumes
that Hol’(M) does not act transitively on the sphere, and after a lengthy algebraic
argument one concludes the proof using the equivalence of local symmetry with the
statement VR = 0 shown by Cartan. A modern, geometric proof based on the
holonomy of submanifolds was established by Olmos [93].

The holonomy of symmetric spaces is rather involved, but is completely classified
by a series of results due to Cartan [47, [48]. See [78] for an introduction to the
holonomy of symmetric spaces.

In the nonsymmetric case, the list of possible holonomy groups is rather short.
This is a consequence of a classification of Lie groups acting transitively on the sphere

due to Cartan.
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Theorem 4.1.7. For an irreducible, simply connected, nonsymmetric Riemannian

manifold manifold M, one of the following cases occurs:

dim (M) Hol" (M) Type

n arbitrary || O(n) Generic

n arbitrary || SO(n) Oriented

n=2m U(m) Kihler

n=2m SU(m) Calabi-Yau
n=4m Sp(m) - Sp(1) | Quaternion-Kdhler
n=4m Sp(m) Hyperkdihler

n= Ga G5 manifold

n=_§ Spin(7) Spin(7) manifold

This is the complete list of Lie groups acting transitively on the sphere, with
the exception of T'- Sp(m) and Spin(9). Topological considerations rule out 7T -
Sp(m). Spin(9) occurs, but only for symmetric spaces. The remainder have been
shown to exist explicitly; in particular the existence of G5 and Spin(7) manifolds was
difficult, but was established by Bryant in [41],[42]. See [35, chapter 10] for a complete

discussion.

4.2 Adapted holonomy of foliations

In this section we introduce a notion of horizontal holonomy for foliations associated
to adapted connections.
Let (M, H, g) be a totally geodesic Riemannian foliation with bundle-like metric,

and denote by V an adapted connection. Denote the Bott connection by V. If p € M
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and 7: [0,7] — M is a piecewise-C'! curve, let us denote by 7,: T,M — T, M the
V-parallel transport along v. Since V is metric, 7, is an element of the orthogonal

group O(T,M, T’,,)M). Moreover, since V preserves H and V), one has

7 (Hp) C Hoyp)s (V) C Vop)-

Therefore 7, induces an isometry 7|y € O(H,, H(p)) and an isometry 7|y € O(V,, Vyp))-
Denote by C, the set of piecewise-C' loops based at p € M. We introduce the

following holonomy groups associated to the connection V.

Definition 4.2.1. Let p € M. We call the subgroups of O(H,) and O(V,) generated

by the set of all 7|y and 7|y, v € C, the horizontal holonomy group at p denoted

by Hol(H,p) and the vertical holonomy group at p denoted by Hol(V,p), respec-

tively. When restricting to the subset C]? C C, consisting only of loops homotopic to

the identity, we get the restricted holonomy subgroups denoted by Hol’(#,p) and

Hol’(V, p).

The horizontal holonomy groups are all isomorphic. This enables us to talk of

the horizontal holonomy group of (M, H, ¢) which we will denote Hol(#), Hol(H).

Similarly, we can talk of Hol(V), and Hol’(V).
Remark 4.2.2. These constructions are invariant by the rescaling g..

We have the following theorem describing the infinitesimal generators of the holon-

omy groups.

Theorem 4.2.3. Let (M, H,g) be an H-type foliation with horizontally parallel tor-

sion. For p € M, the Lie algebra hol(H,p) of Hol(H,p) is exactly the sub-algebra of
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so(H,) generated by the elements 7' o Ry (7yu, 7,v) o T, where u, v run through H,

and vy through C,.

Proof. This is a straightforward consequence of the Riemannian Ambrose-Singer the-

orem [4.1.3] and lemma [3.2.5] O

Remark 4.2.4. Analogously to remark [4.1.4] the theorem will remain true for any

connection with horizontally parallel torsion. This is essential, as otherwise lemma[3.2.5]

will not hold.

Corollary 4.2.5. Suppose (M, H, g) is an H-type foliation with completely parallel
torsion. If m > 4 then Ry =0 and so Hol(H) = Id.

4.3 Holonomy of H-type foliations

In this section we explore the horizontal holonomy of H-type foliations. In particular
we relate the horiztonal holonomy of H-type submersions to the holonomy of the base

space.

4.3.1 Holonomy of H-type submersions

Let (M, #, g, 7) be an H-type submersion with base space (B, j). Assume that B is
connected. We write VM, VB for the Levi-Civita connections on M and B, and V for
the Bott connection on (M, H, g).

In this section, we will characterize the holonomy of H-type submersions in terms
of the holonomy of the associated base space. To begin, we will leverage the fact that
we are working on global submersions by defining the notion of basic vector field that

will be key to our study of the holonomy.
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Definition 4.3.1. We say X € I'(TM) is projectable if there exists X € I'(TB) such
that dr(X) = X. We will say X and X are m-related. Moreover, if X € T'(H) is

projectable we say X is basic.

Basic vector fields are ubiquitous in the study of submersions and foliations. See

for example [35], 110, [87, 66].

Lemma 4.3.2. Associated to any vector field X € T'(TB) there is an unique basic
w-related vector field X € T'(H).

Lemma 4.3.3. Let X, Y € I'(TM) be projectable, and let Z € T'(V).
e [X,Y] is projectable and w-related to [X,Y].
o [X, Z] is vertical.
Proof. We refer the reader to [35] for the straightforward proofs of the lemmas. [

Remark 4.3.4. While basic fields are only sensible for submersions, we recall that
foliations are always locally submersions and so the notion of basic fields can also

sometimes be useful for local computations on general foliations.

Let R® denote the Riemann curvature tensor on B for the Levi-Civita connection,
and Ry as in lemma/3.2.5. We will focus on the relationship between these, for which

the notion of basic fields is a useful tool.

Lemma 4.3.5. Let X,Y,Z be basic vector fields on M, and denote by R® the Riemann

curvature tensor on B. Then Ry(X,Y)Z is basic and is w-related to R®(X,Y)Z.

Proof. Observe that on M,

vprv[xyy}Z = —VT(XJ/)Z = —pIH[T(X, Y), Z] =0
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where we use properties of the Bott connection for the first two equalities and

lemma for the last. As a consequence,
Ru(X.Y)Z =VxVyZ —=VyVxZ = Vi, xv|Z

We now establish the following

Lemma 4.3.6. For basic vector fields X,Y on M,
o VxY is basic and w-related to V]E%Y
e pry,[X,Y] is basic and T-related to [X,Y]

Proof. First, that V&Y is m-related to pry (VYY) follows from writing the lift of
V])B%Y in a local coordinate chart using the Christoffel symbols. Then since X and Y
are horizontal, VxY = pry, (VAY') follows from the properties of the Bott connection
and the first claim is established.

The second claim follows directly from lemma [4.3.3 O

Applying the lemma, we compute on B that

RY(X,Y)Z =V5ViZ - VEVEZ — VB 7

- VXVYZ - VYVXZ - ver[va]Z.

and the lemma follows. O

Denote by Hol(BB, p) the holonomy group of B at p € B for the Levi-Civita con-
nection, and by hol(B, p) its Lie algebra. These are again isomorphic for all p € B,

and so we can write Hol(B) and hol(BB).
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In the following, we consistently denote by ~: [0,7] — M piecewise-smooth hor-
izontal curves, set p = v(0), and their V-parallel transport by 7, : T,M — T, ;M.
Similarly, we denote by 7: [0,T] — B piecewise-smooth curves, p = 7(0), and their
VE-parallel transport by Ti5: TpB — Ty, B. We will also write 7., = 77, and 75 = 715

when convenient.

Theorem 4.3.7. For an H-type submersion (M, H, g, ),
Hol’(#) = Hol (B)

Proof. For p € M, we want to relate the Lie algebras hol(#, p) and hol(B, 7(p)). Using
the Ambrose-Singer theorem and our theorem [{.2.3] this is reduced to studying the
parallel transports 7., 75 and curvature tensors Ry and R®.

We need the following

Lemma 4.3.8. Suppose 7 is a piecewise-C curve on M and let 7 be the piecewise-C*
curve on B determined by Y(t) = w(y(t)). Let u € H, and set u = dym(u) € T;B.
Then for all t € [0,T],

dyyT(Teq (1) = T 5(0).

Proof. Let Y(t) = 7, (u) and Y: [0,T] — TB be the pushforward
Y(t) = dyym(Y (1) € Ty B.

Then
DY =d,yn(D;Y) =0

since Y is the V-parallel transport of u (where D®, DM D are the respective covariant
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derivatives along 7, which do not depend on the choice of extension of Y,Y,+/, and
7). Thus Y is the VE-parallel transport of @ along 7, and the lemma follows from

the uniqueness of parallel transport. O

Now fix p € M; there is a one-to-one correspondence between piecewise-smooth
horizontal curves v on M with v(0) = p and piecewise-smooth curves 4 on B with
7(0) = 7(p) determined by the projection. For any such pair of curves and 7-
related pairs of vectors x,y,2 € H,, %,¥y,Z € Ty B an application of lemma W
and lemma give us that

dyr (7 Ry (7 (), 7 (9))72) = 75 L RE(75(2), 75(9)) 752

and so by theorem [4.2.3]

bhol(H,p) =

Ny

ol(B, 7(p))

and the theorem follows. O

Recalling theorem (3.2.12], we have a complete list of the possible horizontal holonomies

of H-type submersions.

4.3.2 Holonomy of H-type foliations with horizontally paral-
lel Clifford structure

We now consider the more general setting of foliations that are not globally submer-
sions. In view of theorem [4.2.3] to study the horizontal holonomy group Hol(#) the

study of the symmetries of the horizontal endomorphisms Rz will be of paramount
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importance. Given an horizontally parallel Clifford structure, we recall the useful
lemma [3.4.100

Lemma 4.3.9. Let (M, H,g) be an H-type foliation with m = rank(V) > 2 and
parallel horizontal Clifford structure V(u,v) = —k(u - v + (u,v)). Then
[R'H(U,, U), Jz] = K Z ((JjU,U>Jij - (Jiju,v>Jj>.
J=Lj#

for all u,v € Hy, 2 € V).

In particular, we consider the cases when the right hand side has particularly nice

structure.

Corollary 4.3.10. Let (M, H, g) be an H-type foliation with parallel horizontal Clif-

ford structure.

o If k=0 then Ry(u,v) commutes with J..

o [f M is quaternionic, that is if m = 3 and a(p) = {J.,z € V} = s0(3), then

Ry (u,v) will preserve a(p).
From this, the following structural theorem suggested by theorem will follow.

Theorem 4.3.11. Let (M, H, g) be an H-type foliation with parallel horizontal Clif-

ford structure, and set n = rank(H), m = rank(V).
(a) If m = 1, then Hol’(H) is isomorphic to a subgroup of U(n/2).
(b) If m > 2 and k = 0, then Hol’(H) is isomorphic to a subgroup of Sp(n/4).

(¢) If m = 3 and and the maps J,,z € V form a Lie algebra under commutation at

every point, then Hol®(H) is isomorphic to a subgroup of Sp(1)Sp(n/4)
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Proof. Let p € M be a chosen base point, v € Cg. The strategy of the proof is to

explicitly construct appropriate complex and symplectic forms.

(a)

(c)

If m =1, then Hol(V) =1, so 7,2 = z for any z € V, and since J is also parallel
we have 7...J, = J,7,. Fix a unit vector z € V,, and then J = J, = T°(-, -, 2)" will
be a complex structure on 7, M. We can now define a complex inner product on
H, by

(u, wypc = gpu(u,w+ Jw)
We will then have (7 u, 7,w), ¢ = (u, w), ¢, which implies 7, € 4(n/2).
Since rank) = 1 it must be that Ry (u,v) will commute with J. The result

follows from theorem [4.2.3]

We note that since x = 0, we have that J is parallel and that R, = 0, so
Hol(V) = 1. Fixing orthogonal unit vectors z1, z2 € V, we can define J, = J,,
for k = 1,2. We note that J;J; = —JyJ; and that 7,J;, = Ji7,. We use J; as
a complex structure on H, and repeat the argument in (a) to show that, with

respect to the appropriate choice of basis, 7, € U(n/2). Furthermore,

w(u,v) = (Jiu, v)y + i1{J1Jou, v)y, u,v € H,,

is a complex symplectic form on H,, meaning that relative to the same basis

7, € Sp(n/4).

Since k = 0 we have that Ry (u,v) will commute with any Jj by corollary [4.3.10]
The result follows from theorem [4.2.3

From our assumption, it follows that the subbundle {J, € End(#,): z € V} is
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preserved under parallel transport. Hence there is some map @ € End(V,) such

that 7,J.v = Jg.7,v. Furthermore, we have that for any unit vector v € H,,

gp,V<21a 22) = gp,H(T'sz1v7 ijzzv) = gp,’H(JQzﬂ_'y’U» JszT’yU) = gp,V(Qzla QZ2)

so @ is an (orientation preserving) isometry as well. Since a(p) is a subalgebra
of the skew-symmetric endomorphisms isomorphic to sp(1), there exists a unique

element A € exp{J.: z € V,} such that
AJ,A 2 = T,YJZT,;I = Jo..

It follows that 7, := A~'r, satisfies 7, J, = J,7,. By similar arguments as in (b),

it follows that 7, can be made unitary and symplectic.
By corollary [4.3.10, Ry (u,v) will preserve a(p). The result follows from theo-
rem 42,3

]

Remark 4.3.12. The outstanding cases occur for m > 2 k # 0, excluding the
quaternionic case for m = 3. Equivalently, these are the cases for which a(p) =

{‘]217 [J217 JZQ]: 21522 S Vp} = 50<m + 1)



Chapter 5

Sub-Riemannian Comparison
Theorems on H-Type Foliations

Much of the content of this chapter overlaps with a paper coauthored with Baudoin,
Grong, and Rizzi in 2019. For the complete proofs of those results we will refer to
the original paper [25].

In this chapter we consider the sub-Riemannian structure of H-type foliations as
the limit of Riemannian metrics. In particular, we study the distance function and
are able to recover purely sub-Riemannian comparison results that classically rely
on Ricci curvature bounds that cannot naturally exist as limits of the Riemannian

structure.

5.1 Riemannian comparison theorems

One well-established approach to Riemannian geometry is through comparison prin-

ciples; one computes precisely some quantity of interest on model spaces then deter-

101
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mines under what conditions a manifold can be compared to the model spaces, and
thereby estimates can be established. For example, we can consider bounds on the
distance function and its Laplacian.

Fix a point p in a Riemannian manifold (M, g) equipped with the Levi-Civita

connection V9. We can define the distance function r,: Ml — R by

p(q) = dy(p; q)

which is smooth outside of the cut locus Cut,(p). The properties of this function are
of great interest. An upper bound on it establishes a diameter bound, since we can
see that

diam(M, dy) = sup 7,(q).

p,qeM
For example, given a Ricci curvature condition we have a comparison result on the

diameter as follows.

Theorem 5.1.1 (Bonnet-Myers [91]). Let (M, g) be an n-dimensional Riemannian
manifold equipped with the Levi-Civita connection. Then if there exists a constant
p > 0 such that

Ric > (n—1)p

then the diameter bound

diam (M, d,) <

Sl

holds and the manifold is compact with finite fundamental group.

This theorem is established by consideration of the Hessian of the distance func-

tion, and comparison with the model space of positive curvature, the sphere, where
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it holds that

Ric=(n—1)p
7r

diam (5™, d,) =
NG

There is a rigidity theorem stating that the sphere uniquely expresses this property.

Theorem 5.1.2 (Cheng [50]). Suppose (M, g) is an n-dimensional Riemannian man-
ifold equipped with the Levi-Civita connection and such that Ric > (n — 1)p. If there

exist points p,q € M such that

T
dg(p,q) = —=

NG

then M is isometric to the n-dimensional sphere S™.

Under the same conditions on the Ricci curvature, there is a classical estimate for
the Laplacian of the distance function. We define for later convenience the following
function.

Definition 5.1.3 (Riemannian comparison function).

(

Vk cot Vkr itk >0

FRiem(T7 k) = % ifk= 0

V|k| coth \/|k|r if k<0
(
In terms of this function we have the following comparison result.

Theorem 5.1.4 (Laplacian comparison theorem). Suppose (M, g) is an n-dimensional

Riemannian manifold equipped with Levi-Civita connection and that there exists p € R
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such that Ric > (n — 1)p. Then
vr S FRiem(r7 P)

The proof follows from establishing bounds on the Hessian evaluated on Jacobi
fields, and follows as a solution of a Riccati equation; it can be considered to be a
special case of the Rauch comparison theorem [99] 44, 34]. See [83], 96] for a modern

presentation.

5.2 H-type foliations as limits of Riemannian Man-
ifolds

Let (M,H,g) be an H-type foliation. In previous sections we’ve seen that we can
study the sub-Riemannian geometry by investigating the J map, relating properties
of V and especially C1(V) to that of H. There is, however, a stronger sense in which
we can construct the purely sub-Riemannian structure (M, #, g3) as a limit. Recall

the notion of penalty metric from section [1.2.1]

Definition 5.2.1. Let (M, H, g ) be a sub-Riemannian manifold, and let (M g) be
a Riemannian manifold such that g = g @ gy is an extension of g5. We define the

associated penalty metric

1
ge = g1 D EQV

In the particular case of H-type foliations we have the Gromov-Hausdorff conver-
gence theorem [1.2.2] but also a stronger statement that is essential to our approach

to sub-Riemannian comparison theorems.
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Theorem 5.2.2. Let (M, H, g) be an H-type foliation equipped with the penalty metric

e—0T . .
g-. The convergence d, —— dy = d,. is uniform on compact sets.

Proof. This is subtle, and one of the motivating reasons for the study of H-type
foliations. We refer to [25] for details of this result, as well as [II, T02] for further

discussion of the convergence of distance functions in this sense. m

5.2.1 The comparison principle for H-type foliations

We begin by observing that the Bott connection is extremely useful for the study of

penalty metrics.

Lemma 5.2.3. Let (M, H, g) be an H-type foliation equipped with the Bott connection
V, and let g. = gy & %gy be the associated penalty metric. Then V s g.-metric for

all e > 0.

Proof. Let € > 0. Then

(Vxg )Y, 2) = X - g-(Y, Z) = 9:(VxY, Z) = 6-(Y, Vx Z)
X (0. 2)+ Zn(v,2))
- (om(Txv.2) 4 Zn(vx1.2))
- (9. 9x2) 4 201, 9x2))

=X - g(pry Y,pryy Z) — g(Vx pry, Y, 019 Z) — g(pryy Y, Vx pryy Z)

1
+ - (X -g(pryY,pry, Z) — g(Vxpry, Y, pry, Z) — g(pry Y, Vx pry, 7))

1
= (Vxg)(pry, Y,pryy Z) + E(ng)(prv Y,pry, Z) =0
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where we use in an essential way that for the Bott connection prp VxY = Vxprgp Y.

]

We will be studying the Jacobi equation, and as a consequence it will be desirable
to have a metric adjoint connection as in section [2.3] Therefore we define for ¢ > 0

the map J® = %J and write
VexY = ViV 4 JLY, (5.2.1)
following the notation of [23]. Its adjoint is then given by
VEY = VxY — T(X,Y) + JEX.

We stress that both V¢ and V¢ are g--metric for any € > 0.
Let I/%\E(X, Y) = @X@y — @Y@X — @[X,y] be the Riemann curvature tensor
of V. By section we see that a vector field W along a g.-geodesic v is a Jacobi

field if and only if it satisfies the Jacobi equation Z(W) = 0 for the Jacobi operator
Z(W) = Vo VEW + RE(WA)

We can establish a comparison principle as in section for H-type foliations

in terms of the penalty metric g..
Theorem 5.2.4 ([25, Theorem 2.11]). Let (M, H, g) be an H-type foliation.

o Letg. =gy @ %gv be the associated penalty metric, and fix € > 0.

e Choose x € M and y ¢ Cut.(z), and let v. : [0,7.] — M be the unique g.-

geodesic, parametrized with unit speed, joining x with y.
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o Forl eN, let Wy,..., W, be vector fields along v. and g--orthogonal to . such

that

Z/ 9:(Z(W3), Wi) dt > 0. (5.2.2)

Then, aty = v.(r.), it holds

ZHess (ro) (Wi, W;) gz Ves Wi(re)), (5.2.3)

where equality holds if and only of W1, ..., Wy are Jacobi fields for the metric g..

Proof. This is simply the special case of theorem [2.3.13| where the metric is parame-

terized by € > 0. O]
Lemma 5.2.5 (|25, Lemma 2.12]). If u is sufficiently reqular, then one has

Hess"" (u)(W, W) = Hess" (u)(W, W) + ég(Jprv wdu®, pry, W)
Proof. For a g-metric connection V there is a known expression for the Hessian,
HessY (u)(X,Y) = (Vxdu)Y = g(Vxdu*,Y).
Applying lemma and the defining equation eq. we can compute

Hess"" (W)W, W) = g.((Vw + J5)duf, W)

= Hess" (u)(W, W) + g(J§,du*, W)

and the result follows from properties of the J* = %J map. n
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Corollary 5.2.6. If the W, in theorem are horizontal at y = ~(r.), then the
Hessian in (5.2.3|) can be computed equivalently using the Hessian for V; that is

¢ L
Z HessY (r.) (W, W) < Z g-(Wi(r2), /V\E%Wi(Te))a
i=1 i=1

Remark 5.2.7. This corollary is essential, as it implies that Hess" (r.) can be con-
trolled by consideration of fields satisfying a differential equation in . The main
results will follow from establishing formulas uniform in € > 0 and then taking the

sub-Riemannian limit.

In order to verify condition (5.2.2)) of theorem it will be useful to write
explicitly the Jacobi operator in terms of the Bott connection and its curvature. In
the next lemma we do this for the case of H-type foliations with horizontally parallel

torsion.

Lemma 5.2.8 ([25, Lemma 2.14]). Let (M, H, g) be an H-type foliation that admits
a parallel horizontal Clifford structure with constant k. Let W be a vector field along
a g.-geodesic v with € > 0. Let W, be the g.-orthogonal projection of W on the

orthogonal complement of 7. Then

Z(W) = Vo VSW = EVSW 4 Je A+ ks T, + Jraes ¥ + Bu(V.A)

+ Ve (T(W, 7)) + &(T (W, 4) + (W, ) iv) + &2 (Wy) 1.
Proof. We can write the Jacobi operator by expanding the adjoint V¢ = Ve —T¢ as

Z(W) = Va5 (VEsW = T=(4, W) + RE(W, 4)5.
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The proof follows by explicit computation of the horizontal and vertical part of the

above equation. We refer to [25] for the details. O

5.3 Comparison theorems for H-type foliations with
parallel horizontal Clifford Structure

In this section, we will use theoremto obtain bounds on Hess"" (re) and therefore
on HessY (r.) by corollary . The approach is related to the proof of theorem m
but requires some subtlety. In particular, we will need a decomposition of H that
distinguishes between directions associated to the geodesic by the J map and those

which are not.

5.3.1 The Splitting

Definition 5.3.1. For Y € I'(TM), pry, Y # 0 we call the orthogonal splitting
H = Hsas(Y) © Hriem(Y) © span(er Y)

the canonical splitting along Y, where

Hsas(Y) = {J7Y: Z €V}

Hiiem(Y) = {X € H: X L (Hsas(Y) @ span(pry Y))}

This splitting will be important, and is natural for the connection Ve in the

following sense.

Lemma 5.3.2 ([25, Proposition 3.2]). Let (M, H, g) be an H-type foliation with par-
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allel horizontal Clifford structure and satisfying the J* condition. LetY be a @y—
parallel vector field. Then each sub-bundle composing the canonical splitting along Y
15 preserved by @y—pamllel transport. We will say that the splitting is @y—pamllel,

or just parallel.

Proof. Tt’s sufficient to show that Hg.s(Y) is @y—parallel. For X = JzY € Hgas(Y)
we can write

_ 1
Vey X = Jyw,z)Y + JvyzY + EJYJZY

By choosing Z to be @y—parallel and splitting into the cases Z o pry,Y and
Z 1 pr,Y it follows that there exists a basis of Hgas(Y) closed under Ve-covariant

derivation, completing the proof. The details can be found in [25] proposition 3.2]. [

In particular, we will be interested in the case y: [0,7] — M is a geodesic, along

which we will study the frame determined by the canonical splitting along .

Remark 5.3.3. In the case that (M, #,g) does not satisfy the J? condition, it is
necessary to further refine the splitting. We first orthogonally split V = Vg,s(Y) @

Viitype(Y) as

Vsas(Y) ={Z € V: JyJzY C Jy(Y) @ span(pry Y)}

Vigype(Y) ={Z € V: JyJzY L (Jy @ span(pry Y)), Jy JzY # 0}

where Viiype(Y) is motivated as being the space that precisely captures the vertical
vectors Z € V for which the way we utilize the J? condition in the following sections

fails. We then analogously split H = Hgas(Y) & Hnype(Y) ® Hsas(Y') @ span(pry V)
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as

Heus(Y) = {J2Y 1 Z € Vaus(Y)}
Hthpe(Y) = {Jzy, JyJ2Yf 7 € Vthpe}

Hiiem(Y) = {X € H: X L (Hutype ® Hsas(Y) @ span(pry Y))}.

The comparison theorems in the following sections then have to be slightly modified,
in particular to include a new theorem on Hpyype, but the overall conclusion is very
similar.

Notice, however, that if pr,Y = 0 then Viiype(Y) = Hptype(Y) = 0 and the
splitting reduces to the canonical one. It will hold that in the sub-Riemannian limit
¢ — 07 the comparisons converge uniformly, and since our primary motivation is the
study of the sub-Riemannian geometry (where Y = 4 € H) we will not give further

details, but refer to section 3.7.1 through 3.7.3 of [25].

5.3.2 Comparison theorems along the canonical splitting

As in the Riemannian setting, the goal is to establish a comparison theorem relating
the curvature of M to the Hessian of the distance function r(y) = d(z,y) for some
fixed x € M. Note that in our setting the distance function r.(y) := d.(x,y) depends
on the choice of Riemannian metric g., € > 0. For vectors X € H we will establish
comparison theorems for Hess(r.)(X, X) by distinguishing between X in each of the
components of the canonical decomposition along 7, where 7 is the length-minimizing
geodesic connecting = to y ¢ Cut.(z). We establish some notation and make the
following remarks to keep the statement of the theorem as simple as possible.

For a unit speed g.-geodesic v: [0, r.] — M containing no conjugate points joining
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z = 7(0) to y = y(r.) ¢ Cut.(z) it holds that d.(x,v(t)) = ¢t. In particular,
7e(y) = d.(x,y) and 7 = V9%r.. We can write

Y =pry Y +pryy = Vyre +eVyre.

We will also denote by h = ||[Vyre|| and v = ||Vyr.|| as measured by the g = ¢

metric. Because v is unit speed for the g.-metric we have the eikonal equation
IVore)l2 = [4]2 = 2% + ev® = 1.

See [54], 57] for a thorough discussion of geodesics and the eikonal equation. We note
that as ¢ — 0" (the sub-Riemannian limit) we will have h — 1, v — 0, or equivalently
all geodesics become horizontal.

We recall the Riemannian comparison function definition [5.1.3] and establish

Definition 5.3.4 (Sasakian comparison function).

p
Vk(sin Vkr—vkr cos vVkr) .
2—2cos Vkr—/krsin Vkr it k> 0’

FSas(Ta k) = % if k= 0,

v/ |k|(7/ |k|r cosh y/ |k|r—sinh 4 /|k|r) .
_ if £ <0.
\ 2—2cosh/|k|r++/|k|rsinh/|k|r

This was first introduced in [6, Corollary 8.2] as a result of explicit computations on
dimension 3 contact manifolds. We will see that it is an appropariate sub-Riemannian
generalization of FRien.

In theorem we will denote succinctly the assumptions on the H-type foliation

(M, H, g) by writing (J?) if it satisfies the J? condition and (phC's) for the existence
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of a parallel horizontal Clifford structure with constant x.

Theorem 5.3.5 (|25, Theorems 3.3, 3.4, 3.6, and 3.8]). Let (M, H,g) be an H-type
foliation with horizontally parallel torsion. Fiz x € M and y ¢ Cut.(x), and let
v: [0,7:] = M be the unique unit speed g.-geodesic connecting x to y = y(r.). Then

at vy,

(a) Geodesic Comparison: Assume (phC's). For any unit X € span(pry, ),

1 — h?
HessV (r.)(X, X) < :

Te

(b) Riemannian Comparison: Assume (J?,phCs). Suppose there exists p € R such

that whenever Y € H, X € Hgiem(Y) it holds that Sec(X ANY) > p. Then for any

1
Hess" (r.)(X, X) < Friem(7e, ph* + ZUQ).

(¢) Sasakian Comparison: Suppose there exists p € R such that for any X € H,Z € V

it holds that Sec(X NJzX) > p. For any unit X € Hsas(y) we can write X = J473,

and we have that

(1) ]fZ X Pry ;y;
HessY (r.)(X, X) < Fsas(re, ph? + %)

(i) Assume (J?,phCs). If Z 1 pry,7,

Hess" (r.) (X, X) < Fsas(re, ph? + (2 — ke) (ke — 1)v?)
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Remark 5.3.6. Notice that that case (i) of the Sasakian comparison is singular in
only requiring horizontally parallel torsion. When m = 1 this is particularly powerful,
since it will contain all of Hgas(§) (notice that if 4 € H the condition Z o pry, 7 is

trivial).

Remark 5.3.7. Notice that in the degenerate case m = rank()) = 0 that Hgjem (}) =
H \ span(§) = TM \ span(¥) and h = 1,v = 0, thus the Riemannian comparison
recovers the classical theorem [5.1.4l The essential conclusion is that the Sasakian

directions Hg,s are those for which the sub-Riemannian structure weakens the Hessian

comparison (by roughly a factor of 4 as r. — 07, per remark [5.3.9).

Proof. The strategy in each case has a similar structure. We seek to apply theo-

rem [£.2.4]
e Along the geodesic direction, denoting pr, X = pry X — h?% we can choose

Wi(t) = Tipr& X(t)

for which the Jacobi equation is verified easily. By theorem we have

1—h?
Hess(r:)(prs; X, pry X) < .

Te

Consideration of the symmetries of the Hessian, an application of the eikonal

equation ||¥||c = 1, and corollary completes the proof.

e For the Riemannian and Sasakian comparisons, we can use lemma, to sim-

plify the Jacobi equation. If we assume that the sectional curvature is constant
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and choose

W=fX+gY

for an appropriate vector field Y, we can explicitly write the Jacobi equation
as an ODE in f, g and pick initial conditions that will force W to satisfy theo-
rem [(.2.4]

For example, in the Riemannian case X € Hpgjem(7) we choose Y = iJ&X and

the Jacobi equation becomes

f+uvg+ph*f=0

g—uvf+ph’g=0

with initial conditions f(0) = f(r.(y)) — 1 = g(0) = g(r-(y)) = 0.
In all cases the solution can be found explicitly, and applying theorem and

corollary the theorem follows.

Note that in the Sasakian case X = .Jz7¥ we must distinguish between Z o pry, ¥
and Z L pry, 7, with the second case being significantly more difficult. We arrive
at equivalent ODEs for both; the solution of the system is a function of € > 0

but can be bounded above uniformly to complete the proof.

]

Remark 5.3.8. One can also determine vertical Hessian comparison theorems using

the same proof strategy outlined above. While the proof by this method splits into
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the cases Z L pry, ¥ and Z o pry, ¥, we find that in all vertical directions Z € V,

12
Hess(r.)(Z,7) < —

which agrees with the result |23, Remark 3.10].

Remark 5.3.9. Direct computation shows that for any fixed k, we have the asymp-

totic relation
FSas<T7 k)
FRiem<T7 k)

N 4asr— 0

with faster convergence as £k — 0. Since all the curvature terms have the form
k= ph? + av? =% o+ a||Vyrol[?, this tells us roughly that in the sub-Riemannian
limit the Hessian of the distance function grows 4 times as fast in Sasakian directions
than in Riemannian directions.

In fact, this coefficient 4 is related to the measure contraction property MCP
and geodesic dimension discussed in [103, [15]. The MCP is a different generalization
of Ricci lower curvature bounds, and the associated geodesic dimension that arises
can be thought of as a measure of the growth of geodesics. It is established in [15
Theorem 3] that H-type Carnot groups satisfy the MCP with geodesic dimension

n + 3m; this is compatible with the above observation. See [4] for more on geodesic

dimension.

5.3.3 Uniform comparison theorems

In this section we conclude our previous analysis by arriving at purely sub-Riemannian
comparison theorems. The key idea here is that the results of theorem [5.3.5 are

uniform in € > 0, and thus they carry over in the limit € — 0" to the sub-Riemannian
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structure.

We acheive Bonnet-Myers diameter bounds comparable to those acheived in [3]
on contact manifolds, [I2] on quaternion contact manifolds, and [104] on 3-Sasakian
manifolds using the Hamiltonian approach developed in [14]. See also [62], in which
Grong develops a generalization to higher-step sub-Riemannian manifolds that agrees
with the results here.

We also have a sub-Laplacian comparison that naturally arises from our Hessian
bounds in an analogous way to the Riemannian Laplacian comparison theorem [5.1.4]

These agree with the results of [23].

Sub-Riemannian Bonnet-Myers theorems

We begin with a simple lemma following from theorem [5.3.5]

Lemma 5.3.10. Let (M, H,g) be an H-type foliation with horizontally parallel tor-

StoMN.

(a) Riemannian Estimate: Assume (J* phCs). Suppose there exists p € R such that

whenever Y € H, X € Hgiem(Y) it holds that Sec(X ANY) > p, and Kpiem =

ph? + 3v* > 0. Then
7T

V KRiem

re <

(b) Sasakian Estimate: Suppose there exists p € R such that for any X € H,Z € V

it holds that Sec(X A JzX) > p and Kgqs := ph® +v? > 0. Then

2T

V KSas

re <
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Proof. These follow from the fact that Friem(r, k) diverges for r > \/LE and that

Fgas(r, k) diverges for r > \2/—% O

Denote by diamg(M) the sub-Riemannian diameter of M that is,

diamy(M) = sup dy(z,y).
z,yeM

We can proceed directly from the lemma to a diameter estimate for M

Theorem 5.3.11 ([25, Theorem 3.10(b)]). Let (M, H,g) be an H-type foliation that

is complete and has horizontally parallel torsion. Assume there is some p > 0 such

that for any unit X € H,Z € V we have

Sec(X A JzX) > p.

Then

diamg (M) < 2

VP

Proof. We pass to the universal cover M. For p > 0, we have Kgus = ph? + v2 > 0

and from case (b) of lemma [5.3.10] we have uniform convergence

2m e—0t
\

2 < 2w
VKSas \/ﬂ‘i‘ ”VV?"()H2 o \/,5

completing the proof. O

We can be more delicate, considering instead a condition on the horizontal Ricci

curvature

Ricy(X,Y) =) gu(RY (Wi, X)Y. W)
i=1
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where the W; form a g-orthonormal basis of H.
We decompose Ricy (X, X) along the canonical decomposition for X € #H as
Ricgas (X, X) + Ricgiem(X, X) (observe that gy(RY(X,X)X,X) = 0 and so the

span(X) term vanishes). More precisely,

Ricgqs (X, X) ZgH (J2, X, X)X, Jz,X)
=1

n—m-—1

Ricgiem(X, X) = Y gu(R¥ (Y, X)X,Y))

i=1

where the Z; form a gy-orthonormal basis for }V and the Y; form a gy-orthonormal

basis for Hrijem (X).

Theorem 5.3.12 (|25, Theorem 3.10(a,c)]). Let (M, H, g) be an H-type foliation that

is complete, has horizontally parallel Clifford structure, and satisfies the J* condition.

(a) Riemannian-type Diameter Estimate: Suppose thatn > m+1 and for any X € H

there is a p > 0 such that

Ricgiem (X, X) > (n —m — 1)p|| X||*.

Then

diamo (M) S

Sl

(b) Sasakian-type Diameter Estimate: Suppose that for any X € H there is a p > 0

such that

Ricg,s(X, X) > mp| X%
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and either

(i) For any X € H and unit Z € V, Sec(X N JzX) >0, OR

(ii) n > m+ 1 and for any X € H, Ricgiem (X, X) > 0.

Then
27T\/§
\/,5

Proof. Part (a) proceeds as in theorem [5.3.11] applying lemma [5.3.10| (a) after the

observation that the assumption

diamo (M) S

Ricgien (X, X) > (n —m — 1)p| X|*

together with the J? condition implies the existence of an orthonormal basis X; for

Hriem(X) such that

n—m—1
Z Sec(X N X;) > (n—m—1)p.
i=1

)

Part (b) is more subtle, we refer to [25]. O

It’s interesting to note that a lower bound on the Riemannian Ricci curvature
gives a sharp diameter estimate on the complex Hopf fibration, but a lower bound
on the Sasakian Ricci curvature does not. It remains to be seen if the method can
be improved. The diameter bound from theorem [5.3.11 is sharp on quaternionic
and octonionic Hopf fibrations, but undesirably requires a condition on the sectional

curvature. See [27, 29, [19].

Remark 5.3.13. Observing that Ricy is the same curvature as in theorem the
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Horizontal Einstein condition implies that
Ricsas(X, X) + Ricgiem (X, X) = || X||%.

This is insufficient to imply theorem [5.3.12] by itself, but if we assume n > m+ 1 and

the Horizontal Einstein condition holds with A > 0 then
® Ricgs(X, X) >0 = diamo(M) < 7w/
e Ricpiem(X,X) >0 = diamo(M) < 273, /221,

Because the proofs of theorem [5.3.11f and theorem [5.3.12 pass from M to the

universal cover M, we also have that

Corollary 5.3.14. If theorem theorem [5.5.19(a), or theorem |5.3.12(b) hold,

then (M, H, g) is compact with finite fundamental group.

Sub-Laplacian comparison theorems

Recall from section the horizontal Laplacian Ay defined as the horizontal trace

of the Hessian

Ayu = Z Hessv(u)(Xi, X;)

i=1
for a g-orthonormal basis X; of H. We can decompose the Hessian using the canonical
decomposition for any Y € H and thereby obtain sub-Laplacian comparison theorems

for Ay r.. That is, we observe that

n—m—1

Ayr. = Hessv(rg)(VHrg,VHrE)—l—Z HessY (ro)(Jz, Vyre, Jz,Vyr: )+ Z HessY (r.)(X;, X;)

=1 =1
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where the Z; form a g-orthogonal basis for V with || Z;|| = m and the X; form a
g-orthonormal basis for Hpiem(V7:).
Combining the above results, we can establish a sub-Laplacian comparison theo-

rem as € — 0T,

Theorem 5.3.15 ([25, Theorem 3.12]). Let (M, H,g) be an H-type foliation with
parallel horizontal Clifford structure satisfying the J? condition. Let v € M and

define ro(y) = do(z,y). Assume there exists p > 0 such that
Sec(X AY)>p
for all X, Y € H. Fory ¢ Cuty(x) we have
Ayro < (n—m — 1) Friem (70, KRiem) + FSas(70, Ksas4) + (m — 1) Fsas(r0, Ksas, 1)

where

1
KRiem =p+ ZHVVTO‘P
KSas,ﬁ =p+ ||VVTO||2

Kriem,1 = p — 2| Vyrol®

The highlight of the theorem being that it is completely independent of the metric

structure on V, and so it is a purely sub-Riemannian result.

Proof. The proof has two key steps. First one achieves an analogous comparison
theorem for Ayr. in the domain € > 0 simply by summing the results of theorem 5.3.5|

It holds the for y ¢ Cut.(y) that we have uniform convergence r. — rq (this is highly
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nontrivial, [25] Lemma A.1] for details) and as a consequence we have convergence

lim Vyr. = Vyro lim Vyr, = Vyrg.
e—0t e—0t

We also have that the eikonal equation ||Vy7.||? + ¢||Vyre]|> = 1 for € > 0 implies
that ||[Vxrol| = 1. Applying this with the comparison for Ayr. gives the theorem,

taking e — 0. O



Chapter 6

Future Research Directions

In this chapter we briefly consider possible directions for furthering this work.

Berger-Simons Holonomy Theorem

Considering the bijection between the horizontal holonomy of H-type submersions
and the Riemannian holonomy of their base spaces achieved in theorem [£.3.7] it is
possible that we might recover a partial proof of the Berger-Simons theorem {4.1.6]
It’s clear from the classification result theorem that we cannot hope to find
the exceptional holonomy G5 via this approach since there is no H-type submersion
with this horizontal holonomy. However, improving theorem could allow for a
recovery of the rest of the Berger-Simons classification. If successful, this would pro-
vide a complementary geometric proof to that of Olmos [93], which was accomplished

on submanifolds.

124
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Index results for the sub-Laplacian

The index theory of sub-Riemannian geometry is a very open field. There are many

obstructions, such as the fact that in the famous Atiyah-Singer theorem
ind(D) = / ch(D) Td(M)
M

it’s not possible to define the Chern class ch(D) for a hypoelliptic operator such as
the sub-Laplacian. In particular, heat kernel approaches to the index theorem require

a decomposition of the Laplacian as the square of a Dirac operator, as
A = (d+6)?

where 0 is the formal adjoint of the exterior derivative d by the Riemannian metric;
this isn’t sensible for a sub-Riemannian metric, as it is necessarily singular.
However, in the context of H-type foliations one can consider ¢., defined for ¢ >
0 as the formal adjoint of d by the Riemannian metric g.. It seems possible to
recover uniform results on the behavior of these objects as was the approach for the
comparison theorems theorem and theorem if so, one could hope to
thereby achieve a McKean-Singer supertrace theorem in the ¢ — 07 limit, leading

potentially to an index theory for the sub-Laplacian.
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Higher step sub-Riemannian manifolds

H-type foliations are necessarily models of 2-step sub-Riemannian structures because
of their definition using the Bott connection. By defining an analogous construction
using the Hladky connection on higher-step sub-Riemannian manifolds with
an appropriate complementary Riemannian structure (which is not necessarily a fo-
liation), it is possible that we could study the action of a graded family of Clifford
algebras on the horizontal distribution and thereby achieve results for higher-step
sub-Riemannian manifolds. It is presently unclear how rigid this construction would

be.
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