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ABSTRACT

In this thesis, we examine the theory of sub-Riemannian geometries arising as

transversal distributions to totally geodesic foliations. Various connections from the

literature are examined, and their adaptedness to the foliation structure and suitabil-

ity for computation of variational problems is discussed. We study particularly the

notion of H-type foliation that was jointly introduced in [24]. A generalized curva-

ture dimension inequality, horizontal Einstein property, and classification result are

achieved. The holonomy of H-type foliations is explored, in particular we achieve a

result on the holonomy of H-type submersions. Finally comparison theorems for the

Hessian and Laplacian of the distance function based on variational principles are

presented from the joint work [25].
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Chapter 1

Introduction

This thesis explores sub-Riemannian geometries that can arise as transversal distri-

butions to Riemannian foliations. This notion was originally motivated as a broad

generalization of Kaplan’s H-type groups, where one considers the essential structure

to be the horizontal action of Clifford module generated by the vertical space. On an

appropriately compatible Riemannian foliation we can define the notion of an H-type

foliation, where the Clifford algebra generated by the vertical distribution gives sig-

nificant information about the sub-Riemannian geometry; these objects encompass a

number of important examples that are thereby justified as models for comparison

theorems.

The thesis is structured as follows:

Chapter 1: We review relevant notions of foliation theory and sub-Riemannian ge-

ometry, as well as introduce the main results of the thesis.

Chapter 2: We study the theory of connections adapted to foliations. In particular

1
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we consider the conditions under which certain well-established connec-

tions in the literature coincide, and the theory of applications of these

connections to geodesics and Jacobi fields.

Chapter 3: We present H-type foliations, a generalization of Kaplan’s H-type groups,

as introduced in [24]. By considering a complementary Riemannian folia-

tion on these spaces we deduce structural results on the sub-Riemannian

geometry of interest.

Chapter 4: We study a notion of horizontal holonomy on H-type foliations that is well

defined by considering an adapted connection to the foliation. In particu-

lar we recover a relationship between horizontal holonomy of H-type sub-

mersions and the classification of nonsymmetric Riemannian holonomies

due to Berger-Simons-Olmos.

Chapter 5: We present comparison theorems on H-type foliations determined by con-

sidering the convergence of Riemannian penalty metrics, as in [25]. A

Bonnet-Meyers type diameter bound and sub-Laplacian comparison that

classically follow from Ricci curvature lower bounds are recovered.

1.1 Background

Throughout the thesis we will assume a familiarity with differential geometry, espe-

cially the theory of Riemannian manifolds. In this section we will review core concepts

of the theory of foliations and of sub-Riemannian geometry because of their central

nature to the topic of the thesis and to set notation.
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1.1.1 Foliations

A foliation is a partition of a manifold into equivalence classes that locally models

the partition of Rn+m by submanifolds Rm.

Definition 1.1.1. Let M be a n + m dimensional manifold. Suppose there exists a

disjoint collection F of connected, immersed m-dimensional submanifolds such that

for each p ∈M there is a neighborhood Up and a smooth submersion

φUp : Up → Rn

with the property that for any x ∈ Rn the set f−1(x) is either empty or the intersection

of one of the submanifolds of F with Up.

We call the collection F a (codimension-n) foliation of M, and the submanifolds

leaves. A primary resource and overview of the extensive literature on foliations is

[111]. Other valuable references include [66, 73, 87, 30, 86]

Remark 1.1.2. It is important to note that foliations are locally modeled by sub-

mersions; this will be essential multiple times in the sequel.

In particular, we are interested in the structure of the tangent spaces to a foliation.

On a manifold M with foliation F there is a natural subbundle V of TM defined by

the property that at every point p ∈ M,Vp is the tangent space of the leaf of F ; we

will refer to V as the vertical distribution associated to the foliation. By the Frobenius

integrability theorem [58] V is completely integrable, by which we mean that for any

vector fields X, Y ∈ V it must hold that the Lie bracket [X, Y ] ∈ V .

Given a Riemannian metric g on a foliation (M,F) we can consider the trans-

verse distribution H defined such that at every point p ∈M the tangent space splits
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orthogonally as

TpM = Hp ⊕ Vp.

Conversely, given a distribution H with the property that the intersection Hp ∩ Vp is

trivial for all p ∈ M we have up to a choice of normalization a Riemannian metric

g that will orthogonally split the tangent bundle. It is important for our purpose to

understand that this construction does not impose any condition on the integrability

of H. We will call a foliation equipped with a Riemannian metric a Riemannian

foliation.

We will want to distinguish certain geometric conditions on Riemannian foliations.

(a) We will say that (M,F , g) is totally-geodesic if all of the leaves of F are totally-

geodesic submanifolds; that is if every geodesic of the leaves is a geodesic of M.

See especially [73].

(b) We will say that (M,F , g) is has bundle-like metric if the local submersions of

the foliation are diffeomorphisms.

Remark 1.1.3. We mention that these conditions do impose conditions on the cur-

vature of M, the dimensions of H,V , and on the integrability of H, as shown in [31].

In particular, H cannot be completely integrable.

It is a result of Tondeur that these properties can be characterized by the Lie

derivative of the metric.

Theorem 1.1.4 (Tondeur [110]). Let (M,F , g) be a Riemannian foliation.

(a) (M,F , g) is totally-geodesic if and only if for all X ∈ H, Z ∈ V it holds that

(LX g)(Z,Z) = 0.
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(b) (M,F , g) has bundle-like metric if and only if for all X ∈ H, Z ∈ V it holds that

(LZ g)(X,X) = 0.

Unless otherwise stated, we will always insist that our foliations be totally geodesic

and have bundle-like metric.

1.1.2 Sub-Riemannian Geometry

Sub-Riemannian geometry is the study of manifolds that allow for a notion of motion

or length as in Riemannian geometry, but in a constrained way.

Definition 1.1.5. Suppose M is a smooth manifold. If H is a subbundle of TM

that has the property that at every point p ∈ M the entire tangent space TpM is

generated by finitely many brackets of vectors in Hp, we say H is bracket-generating.

If moreover (M,H) is equipped with a fiberwise inner-product gH, we say the triple

(M,H, gH) is a sub-Riemannian manifold with horizontal distribution H.

The smallest number of vector fields x1, x2, . . . , xr ∈ Hp needed to generate TpM

is called the step of the structure at p. If this is constant across M, we say the

sub-Riemannian structure is equivariant.

Sub-Riemannian geometry is increasingly of broad research interest, both intrin-

sically and as it arises in many natural situations such as in physics, control theory,

PDEs, stochastic differential equations, and many other fields. Some excellent ref-

erences include [88, 7, 2, 32, 46, 70, 101]. We will work always with equivariant

sub-Riemannian manifolds of step 2 in this thesis; it is an interesting direction of

research to consider generalizations of our results to higher step.
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It is immediately clear that H is not integrable; in fact the bracket-generating

condition is equivalent to H being as far from integrable as possible. This allows for

sub-Riemannian manifolds to be complete, in the following sense.

Definition 1.1.6. Suppose γ : [0, 1]→M is a smooth curve with the property γ̇(t) ∈

Hγ(t) for almost every 0 ≤ t ≤ 1. We say that γ is horizontal, and we define its

length

`(γ) =

∫ 1

0

√
gH(γ̇(t), γ̇(t)) dt

Moreover, for any two points p, q ∈M we define the Carnot-Caratheodory distance

dcc by

dcc(p, q) = inf
γ∈C(p,q)

`(γ)

where C(p, q) is the collection of horizontal curves connecting p to q.

Importantly, we have a result on the completeness of the metric.

Theorem 1.1.7 (Chow [51], Rashevskii [98]). On a sub-Riemannian manifold (M,H, gH)

the bracket-generating condition implies that any two points p, q can be connected by

an almost everywhere horizontal curve of finite length.

Many sub-Riemannian manifolds have a natural foliation structure. That is, there

exist Riemannian foliations (M,F , g) such that the metric splits orthogonally as g =

gH⊕ gV where V is the (completely integrable) tangent distribution to the leaves and

the transversal distribution H is bracket-generating, thus the triple (M,H, gH) is a

sub-Riemannian manifold. These will be primary objects of interest and we will see

many examples, particularly in section 3.3. We refer to [26, 22, 63, 64] for more about

the sub-Riemannian geometry associated to foliations.
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1.2 Motivating Questions

Sub-Riemannian geometry is a relatively young field and many important questions

remain open. Much of the approach to the field begins in analogy to Riemannian

geometry: recalling important Riemannian results, do they carry forward (with some

suitable generalization) to sub-Riemannian structures?

1.2.1 Curvature in sub-Riemannian geometry

Definition 1.2.1. Let (M,H, gH) be a sub-Riemannian manifold, and let (M, g) be

a Riemannian manifold such that g = gH ⊕ gV is an orthogonally splitting extension

of gH. We define the associated penalty metric

gε = gH ⊕
1

ε
gV

Clearly, g1 = g, and for any ε > 0 the pair (M, gε) is a Riemannian manifold.

As ε → 0+ the magnitude of any vertical vector approaches +∞; heuristically we

can interpret this as the “cost” to move in a vertical direction as increasing without

bound and so in the limit the only curves which will have finite length are those that

are everywhere tangent to the horizontal distribution. This is made precise in the

following sense:

Theorem 1.2.2. In the Gromov-Hausdorff sense we have the convergence

(M,H, gε)
ε→0+−−−→ (M,H, gH)

From here, one could hope to directly recover many classical Riemannian results
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on sub-Riemannian manifolds by consideration of the limit of Riemannian curvature.

Unfortunately this isn’t possible per the following lemma.

Lemma 1.2.3. Let (M,H, g) be an H-type foliation with penalty metric. Denote by

Ricε(X, Y ) = Tr gε(R
ε(X,×)×, Y ) the Ricci curvature associated to the metric gε

with Levi-Civita connection ∇ε,

lim
ε→0+

Ricε(X, Y ) =

 −∞ X, Y ∈ H

+∞ X, Y ∈ V

As a consequence, any Riemannian result that relies on lower curvature bounds

will fail. Much recent literature has been dedicated to resolving this, and in partic-

ular there is significant work in determining an appropriate definition of curvature

quantities in the sub-Riemannian setting in order to recover Riemannian-type results.

Arguably there are two main schools of thought:

• Hamiltonian, as developed in [85], in which one considers the intrinsic sub-

Riemannian Hamiltonian on the cotangent bundle, and thereby studies varia-

tional problems.

• Eulerian, as developed in [21], in which one allows for an analytic structure de-

fined on a complementary distribution V and arrives at purely sub-Riemannian

results by showing an independence from the choice of complement.

One primary motivation for our study of H-type foliations is an agreement of

these methods; as we will see, there is a sense in which results from both schools are

meaningful in this setting and for which the results are complementary.
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1.2.2 Models Spaces in sub-Riemannian Geometry

In particular, there is a notion of comparison theory in Riemannian geometry. It

is well established that the only Riemannian manifolds of constant curvature are

the sphere Sn, the Euclidean space Rn, and the hyperbolic space Hn with positive,

zero, and negative curvature, respectively. On these spaces one computes quantities

of interest explicitly, and then establishes results that determine conditions under

which these quantities can be compared to those of the model spaces. This process

includes results such as

• Rauch and Laplacian comparison theorem

• Bonnet-Meyers diameter and compactness theorem

• Bishop-Gromov inequality

• Cheng rigidity theorem

• Eigenvalue estimates

among others. Leaving aside the issue of determining a precise notion of curvature,

there is a growing consensus [16] that among step 2 sub-Riemannian structures that

the Hopf fibration, the Heisenberg group, and the Anti-de Sitter fibration are appro-

priate models analogous to the the Riemannian ones for comparison theorems to be

built upon. Key properties of these models are captured by the notion of H-type

foliation that we examine.

Remark 1.2.4. The issue becomes significantly more difficult in higher step, as it

becomes apparent that any single curvature quantity is insufficient to determine model

spaces, see for example [61] and the references therein.
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1.3 Main Results

In Chapter 2, our main goal is to understand the notion of a connection adapted

to a foliation (definition 2.2.1) and to explore examples of this in the literature.

In particular, we describe the Bott connection (theorem 2.2.2) axiomatically and

provide a series of results describing the equivalence of other connections with the

Bott connection.

Structure Torsion Reference

Complex Type, m = 1, n = 2k
K-Contact YM [3] [28]
Sasakian CP [3] [40]
Heisenberg Group CP [45]
Hopf Fibration S1 ↪→ S2k+1 → CP k CP [27]

Anti de-Sitter Fibration S1 ↪→ AdS2k+1(C)→ CHk CP [43] [112]

Twistor Type, m = 2, n = 4k
Twistor space over quaternionic Kähler manifold HP [65] [105]
Projective Twistor space CP1 ↪→ CP 2k+1 → HP k HP [29]
Hyperbolic Twistor space CP1 ↪→ CH2k+1 → HHk HP [20] [43]

Quaternionic Type, m = 3, n = 4k
3K-contact YM [72] [109]
Negative 3K-contact YM [72] [109]
3-Sasakian HP [39] [104]
Negative 3-Sasakian HP [39]
Torus bundle over hyperkähler manifolds CP [67]
Quaternionic Heisenberg Group CP [45]
Quaternionic Hopf Fibration SU(2) ↪→ S4k+3 → HP k HP [29]

Quaternionic Anti de-Sitter Fibration SU(2) ↪→ AdS4k+3(H)→ HHk HP [20] [43]

Octonionic Type, m = 7, n = 8
Octonionic Heisenberg Group CP [45]
Octonionic Hopf Fibration S7 ↪→ S15 → OP 1 HP [94]

Octonionic Anti de-Sitter Fibration S7 ↪→ AdS15(O)→ OH1 HP [43]

H-type Groups, m is arbitrary CP [52] [74]

Table 1.3.1: [24, Table 3] Some examples of H-type foliations.

In Chapter 3 we follow [24]. The primary object of the thesis, H-type foliations

(definition 3.2.2), are justified and introduced. To indicate the breadth of these
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objects, we reproduce table 1.3.1 [24, Table 3], classified by the behavior of the Bott

torsion (definition 3.2.4).

We show that H-type foliations are Yang-Mills (lemma 3.2.24) and thereby satisfy

a generalized curvature dimension inequality (theorem 3.2.23) under a Ricci curvature

condition on the horizontal distribution. By consideration of parallel Clifford struc-

tures 3.2.2, there is a achieved a complete classification of H-type foliations arising

as global submersions section 3.2.1. We also establish an horizontal Einstein prop-

erty (theorem 3.4.7) giving the necessary curvature bounds so that on a wide class of

H-type foliations we have the following result.

Theorem 1.3.1 (theorem 3.4.12, [24, Corollary 3.20]). Let (M,H, g) be an H-type

foliation with a parallel horizontal Clifford structure such that κ > 0. Then, M is

compact with finite fundamental group. Moreover,

• If m 6= 3 or m = 3 and (M,H, g) is of quaternionic type then we have the

sub-Riemannian diameter bound

diam(M, dcc) ≤ 4
√

3
π√
κ

√
(n+ 4m)(n+ 6m)

n(n+ 8(m− 1))
,

and we have the following estimate for the first eigenvalue of the sub-Laplacian

λ1 ≥
κ

4

n(n+ 8(m− 1))

n+ 3m− 1
.

• If m = 3 and (M,H, g) is not of quaternionic type, then we have the sub-

Riemannian diameter bound

diam(M, dcc) ≤ 2
√

6
π√
κ

√
(n+ 12)(n+ 18)

n(n+ 8)
,
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and we have the following estimate for the first eigenvalue of the sub-Laplacian

λ1 ≥
nκ

2
.

In Chapter 4 we explore a notion of horizontal holonomy of H-type foliations. In

particular, we show that on H-type submersions there is a strong relationship between

the horizontal holonomy and the Riemannian holonomy of the base space.

Theorem 1.3.2 (theorem 4.3.7). For an H-type submersion (M,H, g, π),

Hol0(H) ∼= Hol
0
(B)

We also achieve a structural theorem in the more general setting of H-type folia-

tions with parallel horizontal Clifford structure (definition 3.2.21).

Theorem 1.3.3 (theorem 4.3.11). Let (M,H, g) be an H-type foliation with parallel

horizontal Clifford structure, and set n = rank(H),m = rank(V).

(a) If m = 1, then Hol0(H) is isomorphic to a subgroup of U(n/2).

(b) If m ≥ 2 and κ = 0, then Hol0(H) is isomorphic to a subgroup of Sp(n/4).

(c) If m = 3 and and the maps Jz, z ∈ V form a Lie algebra under commutation at

every point, then Hol0(H) is isomorphic to a subgroup of Sp(1)Sp(n/4)

In Chapter 5 we follow [25], in which we consider a family of Riemannian metrics

on an H-type foliation converging to the sub-Riemannian structure. By consideration

of Jacobi fields for adapted metric connections with metric adjoint (section 2.3) we

are able to establish uniform comparison theorems that thereby hold in the sub-

Riemannian limit. These include
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Theorem 1.3.4 (theorem 5.3.11, [25, Theorem 3.10(b)]). Let (M,H, g) be an H-type

foliation that is complete and has horizontally parallel torsion. Assume there is some

ρ > 0 such that for any unit X ∈ H, Z ∈ V we have

Sec(X ∧ JZX) ≥ ρ.

Then

diam0(M) ≤ 2π
√
ρ

Theorem 1.3.5 (theorem 5.3.15, [25, Theorem 3.12]). Let (M,H, g) be an H-type

foliation with parallel horizontal Clifford structure satisfying the J2 condition. Let

x ∈M and define r0(y) = d0(x, y). Assume there exists ρ > 0 such that

Sec(X ∧ Y ) ≥ ρ

for all X, Y ∈ H. For y /∈ Cut0(x) we have

∆Hr0 ≤ (n−m− 1)FRiem(r0, KRiem) + FSas(r0, KSas,γ̇) + (m− 1)FSas(r0, KSas,⊥)

where

KRiem = ρ+
1

4
‖∇Vr0‖2

KSas,γ̇ = ρ+ ‖∇Vr0‖2

KRiem,⊥ = ρ− 2‖∇Vr0‖2.



Chapter 2

Connections on Foliations

In this chapter we examine the notion of connections on foliations; in particular we

investigate what it means for a connection to be adapted to a metric and to a foliation,

and present a series of useful results for connections with a variety of properties.

2.1 Theory of Connections

Let M be a smooth manifold. There exists an intrinsic notion of differentiation of

vector fields on M given by the Lie derivative, defined for vector fields X, Y on M as

the derivation

LX Y = [X, Y ] = XY − Y X.

This follows from the perspective of the Lie derivative as the appropriate first-order

term in the flow generated by a vector field, that is

LX Y |p = lim
t→0

DF−t(Y |F t(p))− Y |p
t

14
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where t 7→ F t(0) is the flow generated by X, that is the integral curve for X with

F 0(p) = p. We refer to standard texts such as [113, 77, 80] for more details.

Unfortunately, it isn’t difficult to see that this definition depends on X not only

at p, but in a neighborhood of p; this is undesirable from the point of view of parallel

transport, as it’s not possible to sensibly describe the transport of a vector field along

a curve.

One resolution of this issue with the Lie derivative arises in the notion of a con-

nection.

Definition 2.1.1. Let π : E →M be a vector bundle over M, and suppose

∇ : Γ(TM)⊗ Γ(E)→ Γ(E)

written (X, s) 7→ ∇Xs is a map such that

1. For a fixed s,X 7→ ∇Xs is a (1, 1) tensor. That is

∇fv+gus = f∇vs+ g∇us

for vectors u, v ∈ TpM and functions f, g.

2. For a fixed X, s 7→ ∇Xs is a derivation. That is

∇X(fs+ t) = (Xf)s+ f∇Xs+∇Xt

for sections s, t ∈ Γ(E) and functions f .

Then we call ∇ an (affine) connection on E.
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Remark 2.1.2. Unlike for Lie derivatives, it follows from the tensorial property 1

that the map X 7→ ∇XY at a point p ∈M depends only on X|p, and so it is sensible

to understand connections as a form of directional derivative.

There are many definitions of connections in the literature, see for example [35,

77, 96] for thorough introductions.

Remark 2.1.3. A connection defined on the tangent bundle π : TM → M can be

extended to a connection on all tensor fields by requiring that a Liebniz’ rule and

product rule hold. Specifically, for an (s, r)-tensor S = S1 ⊗ · · · ⊗ Ss, we require the

Liebniz’ rule

(∇XS)(Y1, . . . , Yr) = ∇X(S(Y1, . . . , Yr))−
r∑
i=1

S(Y1, . . . ,∇XYi, . . . , Yr)

and the product rule

∇XS =
s∑
i=1

S1 ⊗ · · · ⊗ (∇XSi)⊗ · · · ⊗ Ss.

We will also define a (s, r + 1)-tensor ∇S by

(∇S)(X, Y1, . . . , Yr) = (∇XS)(Y1, . . . , Yr).

We will be concerned primarily with such connections, and will refer to a con-

nection defined on TM as a connection on M. Hereafter all connections should be

assumed to be connections on M unless otherwise stated.

Connections are not intrinsic to the structure of a manifold, in the sense that any

manifold will have many connections. In fact, we can characterize all connections on
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a manifold as differing by a tensor by the following.

Theorem 2.1.4. Suppose ∇1,∇2 are both connections on M. Then

A(X, Y ) = ∇1
XY −∇2

XY

is a (1, 2)-tensor. Moreover, for any connection ∇1 on M and any (1, 2)-tensor A,

∇2
XY = ∇1

XY + A(X, Y )

is a connection on M.

Proof. We refer to [35] for the proof.

Up to the existence of at least one connection, we can see that there is a bijection

from the set of (1, 2)-tensor fields on M to the set of connections on M.

Remark 2.1.5. Because of this, we want to emphasize the perspective that connec-

tions are extrinsic, and that any results on the topological, smooth, Riemannian, or

other structures on a manifold should be independent of the choice of connection.

They should be considered tools for the computation of intrinsic results. However,

the choice of a connection can be a powerful tool to simplify computations.

2.1.1 Parallel Transport

Improving on the situation with the Lie derivative, connections induce a notion of

parallel transport of tensors on a manifold. In particular, we say that a tensor s along
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a curve γ : [0, T ]→M is ∇-parallel if

∇γ̇s = 0.

This is well-defined since connections are tensorial in the first component. In fact,

given a curve γ we sometimes define the covariant derivative along γ,

Dts =
(
∇γ̇(t)s

)
(γ(t)).

This is only well-defined for s defined on a neighborhood of γ, but we are usually

interested in results that are independent of a choice of extension for s|γ.

If one has a curve γ : [0, 1] → M and a tensor s ∈ Eγ(0), one can define a tensor

field s along γ by parallel transport. This is an ODE and has has a unique solution,

which we will refer to as the parallel transport of s along γ.

We will also make sense of the notion of a ∇-parallel structure in the following

way. Suppose S is a subspace of the total space E of a vector bundle π : E → M. If

S has the property that for all s ∈ S and any vector field XΓ(TM) that

∇Xs ∈ S

then we say S is ∇-parallel.
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2.1.2 Levi-Civita Connection

For any connection ∇ we can define the torsion tensor

T∇(X, Y ) = ∇XY −∇YX − [X, Y ].

We will say that ∇ is torsion-free if T∇ ≡ 0.

On a Riemannian manifold (M, g) we compute that

(∇Xg)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ)

and we will say that ∇ is compatible with g or that it is metric if ∇g ≡ 0; this is

motivated by the fact that for metric connections ∇ we have the sensible formula for

the derivative of the metric

X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

Equipped with these definitions, there is the well-known

Theorem 2.1.6 (Fundamental Theorem of Riemannian Geometry). Let (M, g) be a

Riemannian manifold. Then there exists a unique connection ∇g on M that is metric

and torsion-free. We call ∇g the Levi-Civita connection.

Proof. Suppose that ∇ is a metric and torsion-free connection on M. We have the

metric relation

g(∇XY, Z) + g(Y,∇XZ) = Xg(Y, Z)
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which we can cyclically alternate to recover the Koszul formula

2g(∇XY, Z) = Y g(X,Z) +Xg(Z, Y )− Zg(Y,X)

− g([Y,X], Z)− g([X,Z], Y ) + g([Z, Y ], X).

This formula uniquely determines ∇g, proving both existence and uniqueness.

2.1.3 Metric connections and the Koszul formula

By theorem 2.1.4 any connection on a Riemannian manifold can be written as the sum

of the Levi-Civita connection with a (1, 2)-tensor, but it will often be more useful to

understand connections by an axiomatic description. From the proof of the existence

and uniqueness of the Levi-Civita connection, we can make the following observation.

Theorem 2.1.7. Let ∇ be a metric (but not necessarily torsion-free) connection on

a Riemannian manifold. Then we can write

∇XY = ∇g
XY + A(X, Y )

where

A∇(X, Y ) =
1

2

(
T∇(X, Y )− J∇Y X − J∇XY

)
and J∇ is given by

J∇XY = ((T∇)[(Y, ·, X))]. (2.1.1)

Proof. The metric relation

g(∇XY, Z) + g(Y,∇XZ) = Xg(Y, Z)



21

can be cyclically summed to recover the general Koszul formula

2g(∇XY, Z) = Y g(X,Z) +Xg(Z, Y )− Zg(Y,X)

− g([Y,X], Z)− g([X,Z], Y ) + g([Z, Y ], X)

− g(T∇(Y,X), Z)− g(T∇(X,Z), Y ) + g(T∇(Z, Y ), X).

Observing that

g(J∇XY, Z) = g(T∇(Y, Z), X),

the theorem follows.

Of course, the torsion T∇ and its dual J∇ depend on the connection ∇. This

gives us a condition under which a metric connection will be uniquely defined which

we will use often in order to give axiomatic descriptions of connections.

Corollary 2.1.8. Any metric connection ∇ = ∇g + A∇ is uniquely defined by an

expression for A∇ independent from the connection itself.

2.2 Adapted Connections on foliations

In this section we introduce the notion of an adapted connection to a foliation, and

consider a number of well-known examples.

Definition 2.2.1. Let (M,F , g) be a foliation with vertical distribution V and a

choice of transverse distributionH. We say that a connection ∇ is adapted to the foli-

ation if the connection preserves the foliation; that is if for any vector fieldX ∈ Γ(TM)

it holds that
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• for all Y ∈ Γ(H), ∇XY ∈ Γ(H), and

• for all Z ∈ Γ(V), ∇XZ ∈ Γ(V).

Generally, the Levi-Civita connection ∇g is not an adapted connection (the ex-

ception being of course a trivial foliation of Rn). We shall usually work with metric

connections; we note that it follows from the uniqueness of the Levi-Civita connection

as metric and torsion-free that adapted metric connections must have torsion.

2.2.1 Bott’s Connection

Standard in the literature on foliations [110] [68] [26] is the notion of the Bott con-

nection, which is a metric connection well-adapted to the splitting.

Theorem 2.2.2 (Generalized Bott Connection). For (M, g,F) be a foliation with

orthogonally splitting metric g = gH ⊕ gV . Then there exists a unique connection ∇B

over M called the Bott connection satisfying the following:

1. ∇B is metric,

2. ∇B respects the foliation,

3. TB(E,E) ⊆ E⊥,

4. For Z ∈ E⊥, the tensor CZ ∈ E⊗E∗⊗E∗ given by CZ(X, Y ) = g(TB(X,Z), Y )

is symmetric.

where properties 3 and 4 hold for both E = H and E = V.
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Proof. We will show that the four properties of the Bott connection uniquely deter-

mine it. Suppose that∇ is a connection satisfying properties 1-4. From corollary 2.1.8

it is sufficient to prove that

A∇(X, Y ) =
1

2

(
T∇(X, Y )− J∇Y X − J∇XY

)
can be determined independently of∇. We proceed by cases. Observe that g(∇XY, Z) =

0 whenever Y ∈ E, Z ∈ E⊥ by property 2, so we only consider g(A(X, Y ), Z) for the

case Y, Z ∈ E. If X ∈ E we see from property 3 that

g(T (X, Y ), Z) = g(JYX,Z) = g(JXY, Z) = 0

so g(A∇(E,E), E) = 0.

If X ∈ E⊥, it follows from property 2 that

g(T (Y, Z), X) = −g([Y, Z], X)

or equivalently

JXY = −(L[Y (·, X))]

and from property 4 that

g(T (X, Y )− JYX,Z) = 0.

and so A∇ is uniquely determined by properties 1-4.
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Remark 2.2.3. Notice that all 4 properties are necessary to determine A, which

shows that they constitute a minimal axiomatic description of the Bott connection.

Corollary 2.2.4. The Bott connection can be written explicitly as

∇B
XY =



prH∇
g
XY X, Y ∈ H

prH[X, Y ] + ÂXY X ∈ V , Y ∈ H

prV [X, Y ] + ÂXY X ∈ H, Y ∈ V

prV ∇
g
XY X, Y ∈ V

where ∇g denotes the Levi-Civita connection, and the (1,2)-tensor Â is given by

ÂXY =
1

2

(
(LprV X g)(prH Y, prH ·) + (LprHX g)(prV Y, prV ·)

)]
.

Its torsion has the form

TB(X, Y ) = − prV [prHX, prH Y ] + ÂXY − ÂYX.

Proof. This follows directly from the explicit expression for A obtained in the proof

of the previous theorem, observing that for Y, Z ∈ E, X ∈ E⊥

2g(A∇
B

(X, Y ), Z) = g([Y, Z], X) = (LY g)(Z,X)− g(Z, [Y,X])

and so

g(∇B
XY, Z) = g(∇g

XY + A∇
B

(X, Y ), Z)

= g([X, Y ], Z) + ÂXY
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after an application of Koszul’s formula.

Remark 2.2.5. Notice, our expression for the Bott connection is symmetric inH and

V except for one term in the torsion; this only occurs because the bracket of vertical

fields remains vertical, as can be seen by considering basic fields (see lemma 4.3.3). In

some sense then, the connection doesn’t see the difference between the distributions.

Frequently [110, 115] the name ‘Bott connection’ is ascribed to the restricted case

of totally geodesic foliations with bundle-like metric, or to the partial connection

along the leaves V . In this setting Â vanishes and the connection and torsion simplify

for X ∈ E to

∇B
XY =


prE∇

g
XY Y ∈ E

prE⊥ [X, Y ] Y ∈ E⊥

and

TB(X, Y ) = − prV [prHX, prH Y ]

2.2.2 Tanaka-Webster-Tanno Connection

Contact Manifolds

Definition 2.2.6. We call (M, η) a contact manifold if M is a 2n + 1 dimensional

manifold and η is a 1-form such that η ∧ (dη)n is a volume form on M.

Proposition 2.2.7. Let (M, η) be a contact manifold. There exist on M a unique

vector field ξ, a Riemannian metric g, and a (1, 1)-tensor field J̄ such that for all

X, Y ∈ Γ(TM)
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1. η(ξ) = 1, ιξdη = 0,

2. g(X, ξ) = η(X),

3. g(X, J̄Y ) = dη(X, Y ),

4. J̄2X = −X + η(X)ξ.

See [11] for a proof of the proposition, as well as an introduction to contact

manifolds.

ξ is called the Reeb vector field, and such a metric is said to be compatible with

the contact structure. A contact manifold (M, η) can be canonically equipped with a

codimension one foliation Fξ by choosing the horizontal distribution to be H = ker η

and the vertical distribution V to be generated by the Reeb vector field ξ . This is

known as the Reeb foliation.

Lemma 2.2.8. The characteristic foliation Fξ is totally-geodesic.

Proof. This is equivalent to requirement ιξdη = 0, see [40, lemma 6.3.3].

Remark 2.2.9. In property 3 we take the modern convention, but in the original

work by Tanno [108] he writes instead

2g(X, J̄Y ) = dη(X, Y ).

This is just a choice of normalization, but it will affect the H-type property that we

introduce in chapter 3; see remark 3.2.3.

Remark 2.2.10. There has been established a large collection of statements ranging

from much weaker to much stronger on contact manifolds and related structures. See

[40] for a complete picture.
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Theorem 2.2.11 (Tanno [108]). Let (M, η) be a contact manifold. There exists a

unique connection ∇T on TM satisfying

1. ∇T is metric,

2. ∇T ξ = 0,

3. T T (X, Y ) = dη(X, Y )ξ for any X, Y ∈ H,

4. T T (ξ, J̄Y ) = −J̄T T (ξ, Y ) for any Y ∈ TM

5. ∇T
X J̄ = Q(·, X) for any X, Y ∈ TM,

where the Tanno tensor Q is the (1, 2)-tensor field determined by

Q(Y,X) = (∇g
X J̄)Y +

(
(∇g

Xη)J̄Y
)
ξ + η(Y )J̄(∇g

Xξ).

This connection is known as Tanno’s connection, or sometimes as the Tanaka-

Webster-Tanno connection.

Proof. Let ∇ be a connection obeying the properties above; by corollary 2.1.8 it is

enough to find an expression for

A(X, Y ) =
1

2
(T (X, Y )− JXY − JYX)

independent of the connection. We begin by proving two lemmas.

Lemma 2.2.12. Any connection satisfying properties 1 and 2 must respect the foli-

ation.
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Proof. Notice first, for X ∈ V

∇YX = (Y · η(X))ξ ∈ V .

For X ∈ H,

g(∇YX, ξ) = −(∇Y g)(X, ξ) + Y · g(X, ξ)− g(X,∇Y ξ) = 0

so ∇YX ∈ H, completing the lemma.

From this, it is clear that we only need to establish expressions for g(A(X, Y ), Z)

for Y, Z ∈ E.

Lemma 2.2.13. For any connection obeying properties 1, 3, and 4 it will hold that

• T (H,H) ∈ V

• T (V ,H) ∈ H

• T (V ,V) = 0

Proof. Observe that if X, Y ∈ H that property 3 implies T (X, Y ) = dη(X, Y )ξ ∈ V .

We see that the statement X = −J̄2X is equivalent to X ∈ H, and so applying

property 4 twice it follows that

T (ξ,X) = −T (ξ, J̄2X) = −J̄2T (ξ,X) ∈ H.

Finally, for X, Y ∈ V we have

T (X, Y ) = η(X)η(Y )T (ξ, ξ) = 0
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from the skew-symmetry of T .

We now split the proof by cases. For X, Y, Z ∈ E or X ∈ H, Y, Z ∈ V , we can

apply the lemma and have simply

2g(A(X, Y ), Z) = g(T (X, Y ), Z)− g(T (Y, Z), X)− g(T (X,Z), Y ) = 0

In the case X ∈ V , Y, Z ∈ H we begin by considering property 4 of the torsion

and find

T (ξ, Y ) = J̄T (ξ, J̄Y )

∇ξY − [ξ, Y ] = J̄(∇ξ(J̄Y )− [ξ, J̄Y ])

∇ξY = J̄((∇ξJ̄)Y + J̄(∇ξY )− J̄ [ξ, J̄Y ]− [ξ, Y ]

2∇ξY = J̄Q(Y, ξ)− J̄ [ξ, J̄Y ] + [ξ, Y ]

where we’ve used property 2 to eliminate several terms, and the Q tensor appears.

Since this is an expression for ∇VH independent of the connection we are done.

Remark 2.2.14. The last case X ∈ V , Y ∈ H is somehow singular; taking a direct

approach to computing A(X, Y ) gives only a formula for ∇g
XY . We note that this

case is the only one for which property 5 is essential.

Corollary 2.2.15. Tanno’s connection can be explicitly written as

∇T
XY = ∇g

XY − η(X)J̄Y − η(Y )∇g
Xξ + ((∇g

Xη)Y )ξ
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or equivalently

∇T
XY =



prH∇
g
XY X, Y ∈ H

prH∇
g
XY − η(X)J̄Y X ∈ V , Y ∈ H

prV [X, Y ] X ∈ H, Y ∈ V

prV ∇
g
XY X, Y ∈ V

Proof. By direct computation, the connection defined by this formula satisfies all of

the defining conditions; it follows from uniqueness that this must be Tanno’s connec-

tion. One important note for the computation is that we can write

dη(X, Y ) = (∇g
Xη)Y − (∇g

Y η)X.

Since both ιξdη = 0 and ∇g
ξη = 0 hold, it follows that the expression (∇g

Xη)Y will

vanish unless we have both X, Y ∈ H.

The following proposition is often included as part of the definition of Tanno’s

connection.

Proposition 2.2.16. η is ∇T -parallel

Proof. Observe that for any vector fields X, Y ,

(∇Tη)(X, Y ) = (∇T
Xη)Y

= X · η(Y )− η(∇T
XY )

= X · η(Y )− η(X · η(Y )ξ −∇T
X prH Y ) = 0

where we use that ∇T ξ = 0, and that both H and V are ∇T -parallel.
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Remark 2.2.17. A case of particular interest is when Q ≡ 0; this condition implies

J̄ is ∇T -parallel, and is equivalent to (M, η, J) being a strongly pseudoconvex CR

manifold. Moreover, ξ will be a Killing field, and the foliation will be totally geodesic

with bundle-like metric. We will investigate this in a later section.

Remark 2.2.18. In a recent work [92] Nagase and Sasaki address this same deficiency

of Tanno’s connection for computations on contact manifolds; that is, that the J̄ map

is not parallel. In particular, they define the hermitian Tanno’s connection

∇HT
X Y = ∇T

XY −
1

2
J̄Q(Y,X).

We note that they have taken the normalization g(X, JY ) = dη(X, Y ) (see re-

mark 2.2.9). It can be straightforwardly verified that ∇HY J̄ = 0. This simplifies

the computation of some curvature quantities of interest, but it’s torsion does not

have desired symmetry properties for our purposes.

K-contact manifolds

By insisting the the Reeb field is Killing, we can make the canonical foliation Fξ have

bundle-like metric, at which point the Tanno and Bott connections agree.

Definition 2.2.19. Let (M, η, g) be a contact manifold with compatible metric g.

We call M a K-contact manifold if the associated Reeb field ξ is a Killing field, that

is if

Lξ g = 0.

Our interest in K-contact manifolds is motivated by the following
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Proposition 2.2.20. Let (M, η, g,Fξ) be a contact manifold equipped with Reeb foli-

ation Fξ and compatible metric g. Then the following are equivalent:

1. (M, η, g) is a K-contact manifold,

2. (M,Fξ, g) is a totally-geodesic foliation with bundle-like metric g.

Moreover, if the above statements hold then the Bott connection ∇B on (M, g,Fξ)

and Tanno’s connection ∇T on (M, η, g) coincide.

Proof. We know from lemma 2.2.8 that Fξ is totally-geodesic; since ξ generates V ,

it is clear that the manifold being K-contact is equivalent to it having bundle-like

metric.

The equivalence of ∇B and ∇T will now follow, since ∇T verifies property 1 defin-

ing the Bott connection by definition, properties 2 and 3 are precisely lemma 2.2.12

and lemma 2.2.13, respectively, and property 4 defining the Bott connection is veri-

fied by a consideration of the torsion property 4 of Tanno’s connection using that the

metric is bundle-like. In particular, T (ξ, JY ) = 1
2
(Lξ g)(·, JY )] = 0.

CR Manifolds

We give a brief collection of definitions; for a full review see [55]. A CR-manifold of

type (n,m) is a pair (M, T1,0(M)) where

• M is a real (2n+m)-dimensional smooth manifold,

• T1,0(M) is a complex subbundle of the complexified tangent bundle TM ⊗ C

with complex rank n such that

T1,0(M) ∩ T0,1(M) = ∅,
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where T0,1(M) = T1,0(M) and

• for any open set U ⊆M,

[Γ(U, T1,0(M)),Γ(U, T1,0(M))] ⊆ Γ(U, T1,0(M)).

We then define the horizontal distribution (known as the Levi distribution) on M

as the rank 2n subbundle of TM

H = <(T1,0(M)⊕ T0,1(M)).

There is a canonical complex structure Jb on H given by

Jb(V + V ) = i(V − V ).

We can understand Jb in this setting as distinguishing between T1,0M and T0,1M. In

particular, Jb : T1,0M→ T0,1M and Jb : T0,1M→ T1,0M.

For orientable CR-manifolds of type (n, 1) (which we will refer to just as CR-

manifolds for the remainder of the paper) there is a notion of pseudo-Hermitian

stucture, which is a globally nonvanishing 1-form θ such that

ker(θ) ⊇ H

Given a pseudo-Hermitian structure θ we can further define the Levi form

Lθ(Z,W ) = −i(dθ)(Z,W )
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for Z,W ∈ T1,0(M), and a bilinear structure Gθ

Gθ(X, Y ) = (dθ)(X, JbY )

for X, Y ∈ H. Notice that Lθ and (the C-bilinear H ⊗ C extension of) Gθ agree on

T1,0(M)⊗ T0,1(M). Moreover,

Gθ(JbX, JbY ) = Gθ(X, Y ).

Remark 2.2.21. This will imply that CR manifolds obey are H-type foliations, see

definition 3.2.2.

There is a unique nonwhere vanishing tangent vector field ξ on T (M) such that

θ(ξ) = 1, ιξdθ = 0

which we call the characteristic direction of (M, θ), and define the vertical distribution

V = Rξ to be the subbundle of TM generated by ξ. We see that

TM = H⊕ V .

On a nondegenerate CR-manifold (that is, equipped with a pseudo-Hermitian

structure θ with nondegenerate associated Levi form) there is a canonical semi-
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Riemannian metric gθ referred to as the Webster metric given by

gθ(X, Y ) =


Gθ(X, Y ) X, Y ∈ H

0 X ∈ H, Y ∈ V

θ(X)θ(Y ) X, Y ∈ V

The signature (r, s) of Lθ is constant, and the signature of gθ is always (2r + 1, 2s).

Thus if Lθ is positive definite we see that gθ is Riemannian.

We begin with a convenient definition.

Definition 2.2.22. Let T∇ be the torsion of a linear connection ∇ on a CR manifold

(M, θ) with characteristic direction ξ. We say that T∇ is pure if

1. T∇(Z,W ) = 0,

2. T∇(Z,W ) = 2iLθ(Z,W )ξ, and

3. τ ◦ Jb + Jb ◦ τ = 0

for any Z,W ∈ T1,0(M), where the pseudo-Hermitian torsion τ is the endomorphism

of TM given by

τ(X) = T∇(ξ,X).

In this setting, there exists a well known adapted connection.

Theorem 2.2.23 (Tanaka [107], Webster [114]). Let (M, T1,0(M)) be a nondegenerate

strongly pseudoconvex CR manifold and θ a pseudo-Hermitian structure on M. Let

ξ be the characteristic direction of (M, θ), Jb the complex structure on TM, and gθ

be the Webster metric of (M, θ). There is a unique metric connection ∇TW on M

satisfying
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1. H is ∇TW -parallel,

2. ∇TWJb = 0, and

3. the torsion T∇
TW

is pure.

We call ∇TW the Tanaka-Webster connection, which was introduced indepen-

dently by Tanaka in [107] and Webster in [114]. A thorough discussion can be found

in [55].

Proposition 2.2.24. The Tanaka-Webster connection on (M, θ) coincides with the

Bott connection on (M,H, gθ).

Proof. We see that a nondegenerate CR-manifold is a contact manifold, identifying

the characteristic direction ξ with the Reeb field ξ and

θ = η

gθ = dη

Jb = J̄ |H

In particular, Tanno’s Q tensor vanishes, and as a consequence the manifold is

K-contact and the defining properties of the Tanaka-Webster connection are precisely

those of Tanno’s connection. We conclude that in this setting that the Bott, Tanno’s

and Tanaka-Webster connection coincide.

Remark 2.2.25. From this, we can consider Tanno’s connection a generalization of

the Tanaka-Webster connection. In fact, this is exactly the point of view that Tanno

took in his original paper.
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2.2.3 Biquard’s Connection

Quaternion Contact Manifolds

Definition 2.2.26. Let (M, g,H) be a 4n+3 dimensional Riemannian manifold with

a codimension 3 distribution H such that

1. H has a Sp(n)Sp(1)-structure; that is there exists a rank 3 bundle Q consist-

ing of (1, 1)-tensors on H locally generated by three almost-complex structures

I1, I2, I3 on H satisfying the quaternion relations I1I2I3 = −id which are her-

mitian compatible with the metric, that is

g(Ij·, Ij·) = g(·, ·)

for j ∈ {1, 2, 3}.

2. H is locally given as the kernel of a 1-form η = (η1, η2, η3) with values in R3

such that

g(IjX, Y ) = dηj(X, Y )

for j ∈ {1, 2, 3}.

We then call (M, g,H,Q) a quaternionic contact manifold or qc manifold.

There is an appropriate generalization of the Reeb field to the qc manifold case:

Definition 2.2.27. Suppose there exists a supplementary subspace V to H and an

orthonormal basis {ξ1, ξ2, ξ3} for V such that

1. ηi(ξj) = δij;
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2. (ιξjdηj)H = 0; and

3. (ιξjdηk)H = −(ιξkdηj)H.

The fields ξ1, ξ2, ξ3 are called Reeb vector fields, in keeping with the nomenclature for

contact manifolds.

Remark 2.2.28. Biquard [36] showed that Reeb vector fields always exist for a qc

manifold of dimension 4n+ 3 > 7.

Observe that we can define a map ϕ : V → End(H) by

∑
aiξi 7→

∑
aiIi

In this setting, we have a canonical reference connection:

Theorem 2.2.29 (Biquard [36]). Let (M, g,H,Q) be a quaternionic contact manifold

equipped with Reeb fields {ξi} forming a basis for V = H⊥. Then there exists a unique

connection ∇Bi with torsion TBi on M.

1. ∇Bi is metric;

2. ∇Bi respects the splitting H⊕ V;

3. ∇Biϕ = 0;

4. TBi(H,H) ⊆ V;

5. for X ∈ V , the operator TBiX (·) := TBi(X, ·) : H → H is in (sp(n) ⊕ sp(1))⊥ ⊂

gl(4n).

The connection ∇Bi is called the Biquard connection on (M, g,H,Q).



39

Remark 2.2.30. Duchemin [56] showed that assuming the existence of a triple of

Reeb fields, the Biquard connection is well defined for a 7-dimensional qc manifold.

Corollary 2.2.31. The Biquard connection on (M, g,H,Q) and the Bott connection

on (M,H, g) coincide.

Proof. The proof follows from verifying the defining properties of the Bott connection.

In particular, property 5 will imply the torsion symmetry. See [12, Section 1.2] for

more details.

2.2.4 Hladky’s Connection

We begin in the general setting of sub-Riemannian manifolds with metric complement

on which there exists a connection known as Hladky’s connection. This connection

generalizes the Bott connection.

Graded Sub-Riemannian Manifolds with Compatible Metric

Definition 2.2.32. We call a sub-Riemannian manifold (M, gH,H) equipped with a

choice of supplementary distribution V a sub-Riemannian manifold with complement

or sRC manifold.

We say that a sRC manifold (M, g,H,V) is r-graded if there are smooth constant

rank bundles V(j), 0 < j ≤ r, such that

V = V(1) ⊕ · · · ⊕ V(r)

and

H⊕ V(j) ⊕ [H,V(j)] ⊆ H⊕ V(j) ⊕ V(j+1)
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for all 0 ≤ j ≤ r with the convention that V(0) = H and V(j) = 0 for j < 0 and r < j.

An adapted metric extension for an r-graded sRC manifold (M, gH,V ,H) is a

Riemannian metric g that agrees with gH on H and makes the split

TM = H
⊕

1≤j≤r

V(j)

orthogonal.

For convenience, we shall denote by X(j) a section of V(j) and set

V̂(j) =
⊕
k 6=j

V(k)

Theorem 2.2.33 (Hladky [68]). Let (M, g,H,V) be an r-graded sRC manifold with

adapted metric extension g. There exists a unique connection ∇Hl(r) with torsion

THl
(r)

such that

1. ∇Hl(r) is metric, that is ∇Hl(r)g = 0;

2. V(j) is parallel for all j;

3. THl
(r)

(V(j),V(j)) ⊆ V̂(j) for all j;

4. g(THl
(r)

(X(j), Y (k)), Z(j)) = g(THl
(r)

(Z(j), Y (k)), X(j)) for all j, k.

Proof. Suppose that ∇ is a connection satisfying properties 1-4. Since ∇ is metric,

we have the Koszul relation

2g(∇XY, Z) = 2g(∇g
XY, Z) + g(T (X, Y ), Z)− g(T (Y, Z), X) + g(T (Z,X), Y )
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Because ∇ is parallel for each V(j), we need only consider the cases Y, Z ∈ V(j).

If X ∈ V(j) we see that

g(T (X, Y ), Z) = g(T (Y, Z), X) = g(T (Z,X), Y ) = 0

so ∇XY = prj∇
g
XY .

On the other hand, if X ∈ V̂(j) we have that

g(T (Y, Z), X) = g([Z, Y ], X) and g(T (X, Y ), Z) + g(T (Z,X), Y ) = 0

so we can conclude

2g(∇XY, Z) = 2g(∇g
XY, Z) + g([Z, Y ], X).

We thus have expressions for ∇XY independent of ∇, and so if a connection

satisfies properties 1-4 it must be unique.

From the expression derived above, we can write

∇(r)
X Y =


pri∇

g
XY X, Y ∈ V(i)

pri[X, Y ] + AiXY Y ∈ V(i), X ∈ V̂(i)

where the tensor AiX ∈ T ∗M⊗ TM is given by

2AiXY = ]
(

(LpriX g(prV̂(i) Y, prV̂(i) ·) + (LprV̂(i) X
g)(pri Y, pri ·)

)
.

The expression can be directly confirmed to satisfy the properties of the Hladky
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connection, completing the proof.

Remark 2.2.34. If X, Y ∈ H we see that ∇Hl(r)X and THl
(r)

(X, Y ) are independent

of the choice of grading and metric extension. Moreover, an r-graded sRC manifold

also admits a k-grading (for all 1 ≤ k < r) given by

Ṽ(j) = V(j), 0 ≤ j < k, Ṽ(k) =
⊕
j≥k

V(j)

and then associated to each k-grading there is a connection ∇Hl(k)
. For this entire

family of connections, ∇Hl(j)X(k) = ∇Hl(r)X(k) whenever 0 ≤ k < j, so in particular

for a horizontal vector field X it holds that

∇Hl(1)
X = ∇Hl(2)

X = · · · ∇Hl(r)X

and so the differences between the connections ∇Hl(k)
X can be viewed as a choice of

how to differentiate vertical vector fields.

Definition 2.2.35. Let (M, g,H,V) be an r-graded sRC manifold with extended

metric. We will call ∇Hl := ∇Hl(1)
the Hladky connection.

We see that a foliated manifold with horizontal bundle H is a 1-graded sRC

manifold; we can thus understand the Hladky connection as a generalization of the

Bott connection.

Corollary 2.2.36. On a foliation (M, g,F ,H) the Hladky connection and the Bott

connection coincide.
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2.3 Metric Connections with Metric Adjoint

We will now discuss a notion of connection that is not generally adapted to the

foliation, but is useful in the computation of geodesics.

Definition 2.3.1. Let (M, g) be a Riemannian manifold. For a connection ∇ on M,

we define its adjoint connection

∇̂XY = ∇XY − T (X, Y ) = ∇YX + [X, Y ]

where T (X, Y ) = ∇XY −∇YX − [X, Y ] is the torsion of ∇.

Observe,
ˆ̂∇ = ∇ since

ˆ̂∇XY = ∇̂YX + [X, Y ] = ∇XY.

For a metric connection ∇, it is not always the case that its adjoint ∇̂ is metric.

Lemma 2.3.2. The adjoint of a metric connection ∇ is metric if and only if the

tensor T [ is completely skewsymmetric.

Proof. Directly,

(∇̂Zg)(X, Y ) = g(T (Z,X), Y ) + g(X,T (Z, Y ))

which vanishes if and only if

g(T (Z,X), Y ) = −g(T (Z, Y ), X)
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For all vector fields X, Y, Z. Since the torsion T of any connection is always skew-

symmetric, this is equivalent to T [(X, Y, Z) = g(T (X, Y ), Z) being completely skewsym-

metric.

We’ll see that it’s often desirable to have a metric connection with metric adjoint;

it is clear that the Levi-Civita connection has metric adjoint because the torsion-

free condition implies that it is self-adjoint. In contrast, adapted connections to a

foliation do not generally have metric adjoint. In this situation, one option is to use

the following result.

Lemma 2.3.3. Let (M, g) be a Riemannian manifold with a metric connection ∇.

Define a skew-symmetric tensor JXY by g(JXY, Z) = g(Z, T (X, Y )). Then the asso-

ciated metric adjoint connection

DXY = ∇XY + JXY

is metric with metric adjoint.

Proof. First, we see that D is metric since

(DXg)(Y, Z) = (∇Xg)(Y, Z)− g(JXY, Z)− g(Y, JXZ) = 0.

Also, we see that the tensor T [ is completely skewsymmetric since

g(TD(X, Y ), Z) = g(T (X, Y ) + JXY − JYX,Z)

= −g(JZY + T (Z, Y )− JYZ,X)

= −g(TD(Z, Y ), X)
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so applying the previous lemma we are finished.

Lemma 2.3.4. Let (M, g,F) be a foliation with adapted metric connection ∇. The

associated connection D = ∇+J will preserve the foliation if any only if T∇(H,V) =

0.

Proof. For Y ∈ E,Z ∈ E⊥,

g(DXY, Z) = −g(X,T∇(Y, Z))

which vanishes if and only if T (H,V) = 0.

Corollary 2.3.5. On a foliation (M, g,F) the associated metric adjoint connection

to the Bott connection preserves the foliation if and only if the foliation is totally

geodesic with bundle-like metric.

2.3.1 The geodesic equation for connections with torsion

In this section, we investigate the variational properties of curves in terms of connec-

tions with torsion. We are especially interested in studying the properties of locally

length-minimizing curves.

In the following, let (M, g) be a Riemannian manifold and let ∇ be a g-metric

connection on M. Denote by D = ∇+ J the associated metric adjoint connection to

∇, and let γ : [0, T ]→M be a smooth curve.

Definition 2.3.6. We say that γ is a geodesic if it is a local length-minimizer. More

preciesly, γ is a geodesic if there exists some sufficiently small 0 < t0 ≤ T such that

for 0 ≤ t < t0 it will always hold that γ will be the unique shortest curve between

γ(0) and γ(t).
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We wish to complement this definition with a definition in terms of connections.

Heuristically, we understand that geodesics are curves with constant acceleration, and

interpreting connections as a notion of directional derivative leads to the following.

Definition 2.3.7. Let γ be such that its velocity field γ̇ = dγ
(
d
dt

)
has constant

magnitude and is D-parallel. That is,

g(γ̇, γ̇) = C

Dγ̇ γ̇ = (∇γ̇ + Jγ̇)γ̇ = 0.

We then call γ a ∇-geodesic.

Remark 2.3.8. In the literature (e.g. [35]) we sometimes have the definition that γ

is a ∇-geodesic if it is ∇-parallel. We prefer the above definition so as to guarantee

that for any metric connection, ∇-geodesics are geodesics as we will see below in

lemma 2.3.10.

It is a well established result in Riemannian geometry that the geodesics of a

Riemannaian manifold (M, g) are precisely the ∇g-geodesics for the Levi-Civita con-

nection ∇g. Since it is torsion free, the equation is simply

∇g
γ̇ γ̇ = 0

which indicates why this result is often preferred.

Definition 2.3.9. Let (M, g) be a Riemannian manifold and let γ : [0, T ]→M be a

smooth curve. If c : [−ε, ε]× [0, T ] is such that

• c(s, 0) = γ(0) for all s ∈ [−ε, ε], and
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• c(0, t) = γ(t) for all t ∈ [0, T ]

then we call c a variation of γ.

One can characterize geodesics as solutions to a variational problem.

Lemma 2.3.10 ([25], Lemma B.1). Let c be a variation of γ with fixed endpoint

c(s, T ) = γ(T ) for all s ∈ [−ε, ε]. Then denoting S = dc
(
d
ds

)∣∣
s=0

,

d

ds

∣∣∣∣
s=0

`(c(s, ·)) = −
∫ T

0

g (Dγ̇ γ̇, S) dt.

Corollary 2.3.11. A curve γ will be a geodesic if and only if it is a ∇-geodesic for

some (and therefore any) metric connection ∇.

2.3.2 Jacobi fields and the comparison principle

We are also interested in the properties of the field S = dc
(
d
ds

)
for a variation of

geodesics. See [78] for a complete discussion of established results.

Lemma 2.3.12. Let γ : [0, T ]→M be a geodesic, and let c(s, t) be a geodesic variation

of γ in the sense that for any fixed s the map γs(t) = c(s, t) is a geodesic. Then

S = dc
(
d
ds

)
will satisfy the Jacobi equation

Dγ̇D̂γ̇S +R(S, γ̇)γ̇ = 0

where R is the Riemann curvature tensor associated to D.

Proof. See [35, 96].
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In light of this, we define the Jacobi operator

Z(W ) = Dγ̇D̂γ̇W +R(W, γ̇)γ̇.

We say that a vector field W solving Z(W ) = 0 is a Jacobi field. By lemma 2.3.12

the variational field S = dc
(
d
ds

)
associated to a geodesic variation c must always be a

Jacobi field; this suggests that we can determine controls on the behavior of geodesics

by that of Jacobi fields.

Theorem 2.3.13 (Comparison Theorem). Let (M, g) be a Riemannian manifold

equipped with g-metric connection ∇. Let x, x̄ ∈ M, and suppose we have the fol-

lowing:

• A unit speed geodesic γ : [0, T ] → M joining x = γ(0) and x̄ = γ(T ) that is

length minimizing on the entire interval [0, T ].

• A Jacobi field V for D = ∇+ J such that V (x) = 0.

Defining the distance function r(y) = d(x, y) (in particular r(γ(t)) = t), it will hold

that for any vector field W such that W |γ ⊥ γ̇ and agreeing with V at x and x̄,

HessD(r)(V, V ) ≤ g(W,Dγ̇W )

when both sides are evaluated at x̄, with equality if and only if W = V is a Jacobi

field.

Proof. We refer to [25] for the complete result, but the essential idea is to compute

the Hessian at γ(T ) as the integral of a curvature quantity determined by a Jacobi

field vanishing at γ(0) along γ.
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Lemma 2.3.14. Let (M, g) be a Riemannian manifold equipped with g-metric con-

nection ∇. Let x, x̄ ∈ M, and suppose γ : [0, T ]→ M is a unit speed geodesic joining

x = γ(0) and x̄ = γ(T ) that is length minimizing on the entire interval [0, T ]. Let

w ∈ Tx̄M such that w ⊥ γ̇(T ). Then

HessD(r)(w,w) =

∫ T

0

(
g(Dγ̇V, D̂γV )−R(V, γ̇, γ̇, V )

)
dt

Where V is the unique Jacobi field along γ for D with V (x) = 0, V (x̄) = w.

One then shows by a variational argument that the index

I(W,W ) =

∫ T

0

(
g(Dγ̇W, D̂γW )−R(W, γ̇, γ̇,W )

)
dt

is minimized by Jacobi fields, and from the theorem follows from the uniqueness of

the ODE determining the appropriate Jacobi field.



Chapter 3

H-type Foliations

Much of the content of this chapter overlaps with a paper coauthored with Baudoin,

Grong, and Rizzi in 2018. For the complete proofs of those results we will refer to

the original paper [24].

In this chapter we discuss a class of sub-Riemannian manifolds introduced in

[24] that are equipped with a Riemannian foliation; these complementary directions

determine a Clifford module that has geometric consequences for the sub-Riemannian

structure, and it can be shown that these results hold independently of the choice

of Riemannian complement. This can be viewed in some sense as a more geometric

implementation of the Eulerian approach to sub-Riemannian geometry initiated in

[21]. The remainder of the thesis will be dedicated to the study of the sub-Riemannian

geometry of these objects.

50
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3.1 Motivation

We begin by examining several coincident ideas that motivate the definition of H-type

foliations. In particular, we will look at the H-type groups originally introduced by

Kaplan and the complementary notion of Clifford structures that naturally arise in

this setting.

3.1.1 H-type Groups and Algebras

In [74] Kaplan introduced a family of two-step nilpotent Lie groups motivated by the

study of hypoelliptic Laplacians.

Definition 3.1.1. Suppose n = v ⊕ z is a real Lie algebra with Lie bracket [·, ·]

satisfying

[v, v] ⊆ z, [v, z] = [z, z] = 0.

Suppose moreover there is a scalar product 〈·, ·〉 on G. Then defining J : z→ End(v)

by

〈JZX,X ′〉 = 〈Z, [X,X ′]〉

the algebra is called H-type if

J2
Z = −‖Z‖2Id

Kaplan explores these spaces further in [75, 76]. In particular one can consider

the Clifford algebra Cl(z) defined as the tensor algebra T (z) modulo the relation

x⊗ y + y ⊗ x = −2〈x, y〉Id. Because of the relation

Jz1Jz2 + Jz2Jz1 = −2〈z1, z2〉Id
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the universal property of Clifford algebras (see [38, 81] for fundamental notions)

implies that the J map can be extended to J : Cl(z)→ End(v). There is a complete

classification of these algebras by dimension, and their properties are well-known.

The Lie groups associated to H-type algebras are natural candidates for the con-

sideration of sub-Riemannian geometry, as the Lie algebra describes the tangent space

and we can thereby expect a natural notion of sub-Laplacian. In particular, the sim-

plest nontrivial sub-Riemannian geometry, the Heisenberg group (definition 3.3.1)

falls under this category. Further consideration of these spaces has been extensive,

see for example [52, 45].

3.1.2 Clifford Structures

There is a natural way in which we can describe the action of a Clifford algebra acting

on a Riemannian manifold.

Definition 3.1.2. A rank r Clifford structure on a Riemannian manifold (M, g) is an

oriented rank r Euclidean bundle (E, h) over M together with a non-vanishing algebra

bundle morphism, called a Clifford morphism, φ : Cl(E, h)→ End(TM) which maps

E into the bundle of skewsymmetric endomorphisms of TM.

These structures naturally encompass the extension of the Kaplan J map. In [89],

Moroianu and Semmelmann completely classify the possible parallel Clifford struc-

tures over simply-connected Riemannian manifolds by rank, where such a structure

is considered parallel if it is preserved by the Levi-Civita connection (as described in

section 2.1.1). In particular, there is a strong relationship between the properties of

the Clifford algebra and the Riemann curvature tensor.
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3.1.3 Model Spaces for Curved Sub-Riemannian Manifolds

Considering the natural Clifford algebra arising from H-type groups and the well-

understood Clifford structures on Riemannian manifolds, it seems a natural pro-

gression to consider the possible generalization of Clifford structures to the sub-

Riemannian setting in which the horizontal distribution locally models an H-type

algebra. This was moreover suggested by [21, Remark 2.25].

In particular, there is an ongoing project in the field of sub-Riemannian geometry

[68, 100, 5, 84, 21, 22, 104, 4, 62] exploring appropriate generalizations of curvature. If

one hopes to accomplish comparison results (as discussed in section 5.1) it is necessary

to establish model spaces of sub-Riemannian geometry analogous to the Euclidean

space, sphere, and hyperbolic space of Riemannian geometry. Importantly, it should

be the case that there is a unifying theory justifying the appropriateness of these

spaces as models for comparison. One possible approach is suggested by the notion

of H-type foliations.

3.2 H-Type Foliations

Let (M,H, g) be a totally geodesic foliation with adapted bundle-like metric g =

gH ⊕ gV . Denote by ∇ the Bott connection. For each Z ∈ Γ(TM) we define an

endomorphism JZ ∈ End(Γ(TM)) dual to the Bott torsion

JZX = T [(prHX, prH ·, prV Z)]

or equivalently,

gH(JZX, Y ) = gV(Z, T (X, Y ))
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for all X, Y, Z ∈ Γ(TM).

Remark 3.2.1. Notice that the J map introduced here is the same as the J tensor

defined in eq. (2.1.1) and which was used for determining the existence and uniqueness

of connections; this follows from the expression T (X, Y ) = − prV [prHX, prH Y ]. This

will fail to be true for foliations that are not both totally geodesic and have bundle-like

metric, which partially motivates including these conditions in our definitions.

With this, we can define a structure generalizing Kaplan’s H-type groups, intro-

duced in [74].

Definition 3.2.2. We say that (M,H, g) is an H-type foliation if for every Z ∈ Γ(V)

the map JZ is an isometry; equivalently,

g(JZX, JZY ) = ‖Z‖2g(X, Y ) (3.2.1)

for all X, Y ∈ Γ(TM).

Equation (3.2.1) will be called the H-type condition. It is a generalization in the

sense that it allows for a notion of his J map on sub-Riemannian manifolds defined

by foliations.

Remark 3.2.3. Note, some standard presentations of sub-Riemannian manifolds

with natural foliations will not be H-type groups, such as the Hopf fibration with the

standard metric on the sphere, as we have instead the property

g(JZX, JZY ) = λ‖Z‖2g(X, Y )
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for some fixed λ > 0. In this case we can renormalize the metric as g = gH⊕ 1
λ
gV and

thereby recover an H-type foliation.

We further distinguish H-type foliations by the behavior of the Bott torsion under

covariant differentiation.

Definition 3.2.4. • If all horizontal covariant derivatives of the Bott torsion van-

ish we say (M,H, g) has horizontally parallel torsion and we write ∇HT = 0.

• If all covariant derivatives of the Bott torsion vanish we say (M,H, g) has com-

pletely parallel torsion and we write ∇T = 0.

To exemplify the importance of these definitions, we note the following lemma

that will be used often.

Lemma 3.2.5 ([24], Lemmas 2.6 and 2.7). Let (M,H, g) have horizontally parallel

torsion. Then,

• (∇XJ)Y = −(∇Y J)X , and

• R(X, Y )Z = RH(X, Y )Z +RV(X, Y )Z + (∇ZT )(X, Y )

for all X, Y, Z ∈ Γ(TM), where we define

RH(X, Y )Z = R(prHX, prH Y ) prH Z

RV(X, Y )Z = R(prV X, prV Y ) prV Z.

Remark 3.2.6. The lemma remains true for totally-geodesic foliations with bundle-

like metric even in the absence of the H-type condition.
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Proof. The proof of the lemma is an interesting exercise in considering the symme-

tries of the Riemann curvature tensor. In particular, the second claim is proved by

decomposing R into terms for each possible projection of components. Applying the

first claim, expanding as ∇ = ∇g + A, and using the Bianchi identity we find that

g(R(X, Y )V,W )− g(R(V,W )X, Y ) = g((∇V T )(X, Y ),W )− g((∇XT )(V,W ), Y )

Considering the possible projections, the lemma is proved. We refer to [24] and [22,

Lemma A.1] for the details.

In the following we will denote Ji = JZi and Jij = JZ1JZ2 , and Jijk = JZiJZjJZk

for succinctness.

Lemma 3.2.7 (Basis Lemma). Let (M,H, g) be an H-type foliation, and denote

n = rank(H). Suppose B = {X1, . . . , Xn} is an orthonormal basis for Hp. Define

spanZ(X) = {X, JZX}

spanZ1,Z2
(X) = {X, J1X, J2X, J12X}

spanZ1,Z2,Z3
(X) = {X, J1X, J2X, J12X, J3X, J13X, J23X, J123X}.

We have the following:

1. For any unit Z ∈ Vp the set {JZX1, . . . , JZXn} is an orthonormal basis for Hp.

2. n is even, and n ≥ m + 1. Write n = 2k. For any unit Z ∈ Vp there exists

a subset {X1, . . . , Xk} ⊂ B so that the set
⋃k
i=1 spanZ(Xi) is an orthonormal

basis of Hp.
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3. If m ≥ 2 then n = 4k. There exist orthogonal unit Z1, Z2 ∈ Vp and a subset

{X1, . . . , Xk} ⊂ B such that
⋃k
i=1 spanZ1,Z2

(Xi) is an orthonormal basis for Hp.

4. If m ≥ 4 then n = 8k. There exist orthogonal unit Z1, Z2, Z3 ∈ Vp and a subset

{X1, . . . , Xk} ⊂ B such that
⋃k
i=1 spanZ1,Z2,Z3

(Xi) is an orthonormal basis for

Hp.

5. If n = m+ 1 then n = 2, 4, or 8.

Proof. The first claim follows from applying the skew-symmetry of J to see that

g(JZX,X) = −g(X, JZX) = 0.

The second claim is established by observing that for any X, Y ∈ H, Z ∈ V ,

spanZ(X) is linearly independent and moreover one of the following holds

• spanZ(X) = spanZ(Y ), or

• spanZ(X) ∩ spanZ(Y ) = {0}.

For an appropriate choice of Xi ∈ B the claim follows.

If m ≥ 2, fix orthogonal Z1, Z2 ∈ V . Then the set SpanZ1,Z2(X) is linearly

independent and we have an analogous statement the the last case.

If m ≥ 4 then we can always choose orthogonal Z1, Z2, Z3 ∈ V so that for X ∈ H

the set spanZ1,Z2,Z3
(X) is linearly independent and we again have analogous state-

ment.

The final claim follows from the previous three.

The proof could proceed more elegantly by considering the Clifford algebras Cl(V).

We will take this perspective in the following section.
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Remark 3.2.8. For m = 3, we note that for orthogonal Z1, Z2, Z3 ∈ V it can hold

that J12 = J3, which is why m = 3 does not imply n = 8k. When this occurs, we

say that the J2 condition is satisfied; we call the particular case m = 3 quaternionic.

This will be made precise by definition 3.2.16.

3.2.1 H-type submersions

Definition 3.2.9. Suppose π : (M, g) → (B, j) is a Riemannian submersion with

totally geodesic fibers and (M,H, g) is an H-type foliation with horizontally parallel

torsion, where H is the horizontal space of π. We will call (M,H, g, π) an H-type

submersion.

In fact, the Heisenberg group, the Hopf fibration, and the Anti-de Sitter fibra-

tions (which we define in section 3.3.1) are all H-type submersions. We were able

to classify all simply connected H-type submersions in [24, theorem 3.15] with par-

allel horizontal Clifford structures (defined in section 3.4) by consideration of the

analogous classification [89] of Clifford structures on Riemannian manifolds.

To understand this, we recall the notion of curvature constancy:

Definition 3.2.10. For ρ ∈ R, the ρ-curvature constancy of a Riemannian manifold

(M, g) is the subbundle of TM given at p ∈M by

Cp(ρ, g) = {v ∈ TpM : R(v, x)y = ρ
(
g(x, y)v − g(v, y)x

)
for all x, y ∈ TpM}

for the Riemann curvature tensor R associated to the Levi-Civita connection.

Gray [60] defined this as one component of a decomposition of the tangent bundle

in terms of the behavior of the Riemann curvature tensor. This space is totally
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M B Fiber rank(H) rank(V)

Twistor space Quaternion-Kähler with
positive scalar curvature

S2 4k 2

3-Sasakian Quaternion-Kähler with
positive scalar curvature

S3 4k 3

Quaternion-
Sasakian

Product of two quaternion-
Kähler with positive scalar
curvature

RP 3 4k 3

Sp(q++1)×Sp(q−+1)
Sp(q+)×Sp(q−)×Sp(1)

HP q+ ×HP q− S3 4(q++q−) 3
Sp(k+2)

Sp(k)×Spin(4)
Sp(k+2)

Sp(k)×Sp(2)
S4 8k 4

SU(k+4)
S(U(k)×Sp(2)U(1))

SU(k+4)
S(U(k)×U(4))

RP 5 8k 5
SO(k+8)

SO(k)×Spin(7)
SO(k+8)

SO(k)×SO(8)
RP 7 8k, k ≥ 3,

k odd
7

Spin(k+8)
SO(k)×Spin(7)

SO(k+8)
SO(k)×SO(8)

S7 8k, k = 1,
k even

7

Exceptional cases
F4

Spin(8)
F4

Spin(9)
= OP 2 S8 16 8

E6

Spin(8)U(1)
E6

Spin(10)U(1)
= (C⊗O)P 2 S9 32 9

E7

Spin(11)SU(2)
E7

Spin(12)SU(2)
= (H⊗O)P 2 S11 64 11

E8

Spin(15)
E8

Spin+(16)
= (O⊗O)P 2 S15 128 15

Table 3.2.1: [24, Table 1] H-type submersions with a parallel horizontal Clifford
structure and κ > 0.

geodesic and determines a bundle-like metric under our conditions, and in particular,

one recovers the equivalence

Theorem 3.2.11 ([24, Theorem 3.11, Remark 3.12]). Let (M,H, g) be a totally

geodesic foliation with bundle like metric and let K 6= 0. The following are equiv-

alent:

• Vp ⊂ Cp(K, g) for all p ∈M.

• (M,H, gH⊕ 1
4K
gV) is an H-type foliation with parallel horizontal Clifford struc-

ture with κ = 2K.
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From this we can arrive at the key result.

Theorem 3.2.12 ([24, Corollary 3.14, Theorem 3.15]). Let (B, j) be an n-dimensional

Riemannian manifold carrying a rank m + 1 parallel nonflat even Clifford structure

in the sense of Moroianu-Semmelmann [89] with n 6= 8. Then the sphere bundle

Sm ↪→ M → B is an H-type foliation with parallel horizontal Clifford structure. In

particular, restricting to the case of submersions we can conclude that [24, Tables 1

& 2] gives the complete list of H-type submersions with κ 6= 0.

We refer to [24] for the proofs. The essential observation is that the parallel

horizontal Clifford structures we introduce and the parallel Clifford structures of [89]

are analogous for this construction as follows from theorem 3.2.11 and as such the

classification [89, Theorems 3.6 & 3.7] will give us the result. We reproduce table 3.2.1

giving the classification for κ > 0 for completeness.

These constitute an important class of H-type foliations, as any foliation is locally

a submersion remark 1.1.2 and so local properties of H-type foliations are determined

by these examples.

3.2.2 Structure of Cl(V)→ End(H)

In this subsection we are interested in examining more closely the algebra gener-

ated by the horizontal endomorphisms JZ . Recall the notion of H-type algebra from

section 3.1.1.

Lemma 3.2.13. Let (M,H, g) be an H-type foliation. Then for every p ∈ M the

tangent space TpM is an H-type algebra.
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Proof. The proof follows immediately from consideration of the H-type condition

eq. (3.2.1) pointwise.

By a polarization argument, we see that for all Z1, Z2 ∈ V we have the Clifford

relation

JZ1JZ2 + JZ2JZ1 = −g(Z1, Z2)Id.

By the universal property of Clifford algebras we can extend the map J : Γ(V) →

End(Γ(H)) defined by Z 7→ JZ to a representation of Cl(Vp) for p ∈ M. In par-

ticular, at any p ∈ M such a map can be uniquely extended into a bundle algebra

homomorphism from the Clifford algebra Cl(Vp) to the algebra of horizontal endo-

morphisms End(Hp), where the product on End(Hp) is given by composition. That

is

J1 = IdH and Jv·w = JvJw.

We make the identification Λ2V ∼= Cl2(V) ⊂ Cl(V) obtained through the canonical

isomorphism Z1 ∧ Z2 7→ Z1 · Z2 + 〈Z1, Z2〉.

In the remainder of this section, we consider various properties of this homomor-

phism.

Quaternionic Structures

We first consider the algebra generated by the J maps. That is,

Definition 3.2.14. Let (M,H, g) be a H-type foliation. For p ∈ M, denote by a(p)

the Lie sub-algebra of End(Hp) generated by the Jz, z ∈ Vp.

It turns out that there are relatively few possibilities, and these are strongly

determined by V .



62

Lemma 3.2.15 ([24, Lemma 2.12]). Let (M,H, g) be an H-type foliation. Let p ∈M.

Consider End(Hp) as a Lie algebra with commutator brackets. One of the following

holds:

(i) m = 1 and a(p) = {Jz : z ∈ Vp} ∼= R;

(ii) m = 3 and a(p) = {Jz : z ∈ Vp} ∼= so(3);

(iii) m ≥ 2 and a(p) = {Jz0 , [Jz1 , Jz2 ] : z1, z2 ∈ Vp} ∼= so(m+ 1).

Proof. We refer to [24] for the proof, but observe that the key consideration is that

for m = 3 it can hold that for orthogonal z1, z2, z3 ∈ Vp that J12 = J3; this is case

(ii). If m ≥ 2 and (ii) doesn’t hold then the Jz do not form a Lie algebra without the

brackets [Jz1 , Jz2 ].

Case (ii) is often singular in proofs to follow in a manner that is somehow analogous

to the case of self-dual Einstein manifolds; we therefore distinguish it.

Definition 3.2.16. Let (M,H, g) be an H-type foliation. We say that (M,H, g) is

of quaternionic type if case (ii) of lemma 3.2.15 holds.

Remark 3.2.17. For H-type foliations of quaternionic type it must be that the field

A(p) = {Jz : z ∈ R ⊕ V} is field isomorphic to the quaternions, which motivates the

name.

While the definition of a(p) is only sensible pointwise, it turns out to be indepen-

dent of the choice of point.

Lemma 3.2.18 ([24, Lemma 2.13]). Let (M,H, g) be an H-type foliation with hori-

zontally parallel torsion. Then for any p, q ∈M, a(p) is isomorphic to a(q).
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Proof. Since ∇HJ = 0 follows from the horizontally parallel torsion, the ∇-parallel

transport along any horizontal curve connecting p to q induces a Lie algebra isomor-

phism a(p) ∼= a(q).

The J2 condition

Instead of examining the Lie algebra a, we can consider instead a condition on the

composition of J maps.

Definition 3.2.19. Let (M,H, g) be an H-type foliation. We say that the J2 con-

dition holds if for any orthogonal Z1, Z2 ∈ Γ(V) and X ∈ Γ(H) it holds that there

exists a Z3 ∈ Γ(V) such that

JZ1JZ2X = JZ3X

It should be emphasized, Z3 can depend on Z1, Z2, and X, and so this does not

imply that a(p) form a subalgebra of End(Hp). However,

Lemma 3.2.20. Let (M,H, g) be an H-type foliation with horizontally parallel torsion

and satisfying the J2 condition. Then one of the following occurs:

• m = 1, Hp
∼= Cn/2

• m = 3, Hp
∼= Hn/4

• m = 7, Hp
∼= O1

for each point p ∈M.

Proof. It is known from [52, 45] that the J2 condition for H-type algebras implies the

theorem for each p. The lemma follows from lemma 3.2.18.
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Parallel Horizontal Clifford Structures

We can also consider how the Bott connection ∇ can interact with the J maps. In

particular, we have the following definition.

Definition 3.2.21. Let (M,H, g) be an H-type foliation with horizontally parallel

torsion. We say that (M,H, g) is an H-type foliation with parallel horizontal Clifford

structure if there exists a smooth bundle map Ψ : V × V → Cl2(V) such that for

every Z1, Z2 ∈ Γ(V)

(∇Z1J)Z2 = JΨ(Z1,Z2).

Essentially, the existence of a parallel horizontal Clifford structure is equivalent to

the existence of a subgroup of End(H) (isomorphic to Cl(V)) preserved by horizontal

parallel transport. We defer consideration of this idea to section 3.4.

3.2.3 Curvature Dimension Inequalities

Curvature Dimension Inequalities

In Riemannian geometry there are many results that depend on a lower bound on

the Ricci curvature; that is, we say that ρ ∈ R is a lower Ricci curvature bound on a

Riemannian manifold (M, g) if it holds for any X ∈ TM that

Ric(X,X) ≥ ρg(X,X).

These go back as far as [37]; standard references such as [59, 96, 77, 80, 83, 116] give

plethora examples.
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It was shown in [9] that a lower Ricci bound Ric ≥ ρg is equivalent to the statement

‖∇2f‖2 + Ric(∇f,∇f) ≥ 1

n
(∆f)2 + ρ‖∇f‖2

for any f ∈ C∞(M), where M has dimension n. Remarkably many classical Rieman-

nian results relying on Ricci lower bounds can be derived directly from this, using

purely analytical considerations.

Bakry, Ledoux, and their coauthors [10, 82] generalized this idea, allowing for a

recovery of many of these classical Riemannian results on spaces that don’t have a

natural notion of curvature. In particular, they associate to a smooth, second-order

diffusion operator L with real coefficients satisfying L1 = 0 the symmetric forms

Γ(f, g) =
1

2

(
L(fg)− fLg − gLf

)
Γ2(f, g) =

1

2

(
LΓ(fg)− Γ(f, Lg)− Γ(g, Lf)

)
.

In the particular case L = ∆, the Riemannian Laplacian, we see that

Γ(f) := Γ(f, f) = ‖∇f‖2, Γ2(f) := Γ2(f, f) = ‖∇2f‖2 + Ric(∇f,∇f)

and we can rewrite the inequality as

Γ2(f) ≥ 1

n
(Lf)2 + ρΓ(f).

This is referred to as the curvature dimension inequality CD(ρ, n). As in the special

case of Riemannian manifolds, this condition allows for the recovery of a wide array

of results from purely analytical considerations.
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On an H-type foliation (M,H, g) we define the sub-Laplacian ∆sR as the generator

of the symmetric closable bilinear form in L2(M, µg):

EH(u, v) =

∫
M
〈∇Hu,∇Hv〉 dµg, u, v ∈ C∞0 (M)

where the horizontal gradient ∇H denotes the projection of the Levi-Civita connec-

tion ∇g onto H. We define similarly the vertical gradient ∇V . The bracket-generating

condition on H implies ∆sR is locally subelliptic [69], and completeness of the Rie-

mannian metric g implies ∆sR is essentially self-adjoint on C∞0 (M) [17].

We also define the horizontal Laplacian ∆H as the horizontal trace of the Ricci

tensor; that is

∆Hf =
n∑
i=1

Hess(f)(Xi, Xi)

for an orthonormal basis Xi of H. On H-type foliations the Riemannian measure µg

is proportional to the intrinsic Popp’s measure, and so ∆H and ∆sR coincide [13].

Unfortunately, setting L = ∆H, it is too much to hope that a curvature dimension

inequality will hold; this can be seen as a consequence of lemma 1.2.3. Address-

ing precisely this deficiency, Baudoin and Garofalo introduced in [21] the following

generalization.

Say a symmetric bilinear form ΓZ : C∞(M)×C∞(M)→ R is admissible if it obeys

the following conditions:

(i) There exists an increasing sequence hk ∈ C∞0 (M) such that hk ↗ 1 on M and

‖Γ(hk)‖∞ + ‖ΓZ(hk)‖∞ → 0 as k →∞.
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(ii) For any f ∈ C∞(M) it holds that Γ(f,ΓZ(f)) = ΓZ(f,Γ(f)).

Denote

Γ2(f, g) =
1

2

(
LΓZ(f, g)− ΓZ(f, Lg)− ΓZ(g, Lf)

)
.

Definition 3.2.22. We say that M satisfies the generalized curvature dimension in-

equality GCD(ρ1, ρ2, κ, n) with respect to L and admissible ΓZ if there exist constants

ρ1 ∈ R, ρ2 > 0, κ ≥ 0, and 0 < n ≤ +∞ such that

Γ2(f) + νΓZ2 (f) ≥ 1

n
(Lf)2 +

(
ρ1 −

κ

ν

)
Γ(f) + ρ2ΓZ(f)

holds for all f ∈ C∞(M) and ν > 0.

Notably, the bilinear map ΓZ is not intrinsic to the space being considered. In

fact, on a Riemannian manifold (M, g) setting L = ∆,ΓZ = 0, κ = 0 we recover the

curvature dimension inequality CD(ρ1, n).

We will define on H-type foliations

ΓZ(f, g) = g(∇Vf,∇Vg)

and so we see that ΓZ is a measure of the contribution of V ; considering that we are

interested in a sub-Riemannian result, it’s sensible that this should not be expected

to be intrinsic.

Importantly, it has been shown that on a sub-Riemannian manifold satisfying the

generalized curvature dimension inequality that many important Riemannian results

can be recovered analogously to the curvature dimension inequality; in particular the

GCD is known to imply the following:
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• Li-Yau type inequality

• Scale-invariant parabolic Harnack inequality

• Off-diagonal Gaussian upper bounds

• Liouville-type theorem

• Bonnet-Meyers diameter bound

Essentially, we can regard the GCD(ρ1, ρ2, κ, d) as a candidate for replacing a lower

Ricci bound. For full details, see [21, 18].

We will proceed to show that on H-type foliations a generalized curvature dimen-

sion inequality holds given a lower bound on the horizontal Ricci curvature.

Theorem 3.2.23 ([24, Proposition 2.20]). Let (M,H, g) be a complete H-type folia-

tion, and denote n = rank(H),m = rank(V). If there exists a constant ρ ∈ R such

that RicH ≥ ρgH, then the GCD(ρ, n
4
,m, n) is satisfied.

From physics, there is a notion called the Yang-Mills property that we will need.

We see that all H-type foliations naturally satisfy it.

Lemma 3.2.24 ([24, Theorem 2.17]). Let (M,H, g) be an H-type foliation. Then

(δHT ) = TrH(∇B
×T )(×, ·) = 0.

We say that (M,H, g) is Yang-Mills.

Proof. Let p ∈ M be arbitrary. Let Z ∈ Vp be a unit vector and X1, . . . , Xn be an



69

orthonormal basis of Hp. By lemma 3.2.7 so is JZX1, . . . , JZXn. For Y ∈ Hp,

g(TrH(∇×T )(×, Y ), Z) =
n∑
i=1

g((∇JZXiJ)ZJZXi, Y )

= −
n∑
i=1

g(∇XiJ)ZXi, Y )

= −g(TrH(∇×T )(×, Y ), Z).

Where we use the fact that for Z ∈ Γ(V),

(∇JZXJ)ZJZX = −‖Z‖2(∇XJ)ZX

which follows from a clever application of the Bianchi identity [24, lemma 2.18]. We

see then that δHT = TrH(∇×T )(×, · ) = 0 and so the foliation is Yang-Mills.

Proof of theorem 3.2.23. We first define

R(f) = Ric(∇Hf,∇Hf)− (δHT )(∇Hf)f +
1

4

n∑
`,k=1

(T (X`, Xk)f)2

S(f) = −2
n∑
i=1

g(∇Xi∇Vf, T (Xi,∇Hf))

T (f) =
n∑
i=1

‖T (Xi,∇Hf)‖2

where the Xi are any orthonormal basis of H.

Lemma 3.2.25. On a sub-Riemannian manifold (M,H, gH) with n = rank(H), the

system  R(f) ≥ ρ1Γ(f) + ρ2ΓZ(f),

T (f) ≤ κΓ(f)
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implies that GCD(ρ1, ρ2, κ, n) holds for the sub-Laplacian ∆sR.

Proof. This is [21, theorem 2.19]; first one shows that there hold Bochner-type for-

mulas

Γ2(f) = ‖∇2
Hf‖2 +R(f) + S(f)

ΓZ2 (f) = ‖∇H∇Vf‖2,

which can be computed explicitly in an adapted frame. The lemma then follows from

several clever applications of Schwarz’ inequality.

We can expand T (X`, Xk) =
∑m

i=1 gH(JZiX`, Xk)Zi for an orthonormal basis Zi

of V , and so

n∑
`,k=1

(T (X`, Xk)f)2 =
n∑

`,k=1

(gH(J∇VfX`, Xk))
2 = n‖∇Vf‖2. (3.2.2)

By lemma 3.2.24 we see that the horizontal divergence of the torsion δHT vanishes,

and together with eq. (3.2.2) this implies

R(f) ≥ ρΓ(f) +
n

4
ΓZ(f).

Finally, we expand

T (f) =
n∑
i=1

m∑
j=1

∥∥gH(JZj∇Hf,Xi)
∥∥2

=
m∑
j=1

‖JZj∇Hf‖2 = mΓ(f)

for an orthonormal basis Zj of V . With lemma 3.2.25 this completes the proof.
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Remark 3.2.26. We see that for the curvature quantity

R(f) = Ric(∇Hf,∇Hf)− (δHT )(∇Hf)f +
1

4

n∑
`,k=1

(T (X`, Xk)f)2

the only term with both vertical and horizontal derivatives is the horizontal diver-

gence (δHT )(∇Hf)f ; the fact that this vanishes on Yang-Mills manifolds is the es-

sential reason why we can separately bound the horizontal and vertical derivatives in

lemma 3.2.25.

Remark 3.2.27. As shown in [21, theorem 2.20], the system of lemma 3.2.25 is

actually equivalent to GCD(ρ1, ρ2, κ, n), but this takes significantly more work to

show.

We list some immediate results for H-type foliations that follow from established

consequences of the generalized curvature dimension inequality.

Corollary 3.2.28 ([24, Corollary 2.21]). Let (M,H, g) be a complete H-type foliation

with RicH ≥ ρgH for some ρ ∈ R. Let us denote by dcc the Carnot-Carathéodory

distance.

1. If ρ ≥ 0, then the metric measure space (M, dcc, µ) satisfies the volume dou-

bling property and supports a 2-Poincaré inequality, i.e. there exist constants

CD, CP > 0, depending only on ρ, n,m, for which one has for every p ∈M and

every r > 0:

µ(B(p, 2r)) ≤ CD µ(B(p, r)),∫
B(p,r)

|f − fB|2dµg ≤ CP r
2

∫
B(p,r)

‖∇Hf‖2dµg,
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for every f ∈ C1(B(p, r)), where we have let fB = µg(B)−1
∫
B
fdµg, with B =

B(p, r).

2. If ρ > 0, then M is compact with a finite fundamental group and

diam(M, dcc) ≤ 2
√

3π

√
(n+ 4m)(n+ 6m)

nρ
.

3. If ρ > 0, then the first non zero eigenvalue of the sub-Laplacian −∆H satisfies

λ1 ≥
nρ

n+ 3m− 1
.

Proof. Point 1 follows from [18, Theorem 1.5], and Point 2 from [21, Theorem 10.1]

or [17, Theorem 6.1] for a simpler proof. Point 3 follows from [17, Theorem 4.9].

3.3 Some specific H-type Foliations

In this section we make explicit some important examples of H-type foliations, both

to demonstrate the considerable number of sub-Riemannian spaces included by this

definition as well as to provide the reader with a reference point by which to think of

these structures.

3.3.1 Heisenberg Groups, Hopf fibrations, and Anti-de Sitter
Spaces

The prototypical example of a sub-Riemannian manifold is the Heisenberg group,

associated to flat Euclidean space.
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Definition 3.3.1. Let R2n+1 with coordinates (x1, . . . , xn, y1, . . . , yn, z) be equipped

with the foliation

R ↪→ R2n+1 π−→ Cn.

where V tangent to the fibers is generated by Z = ∂z and define a transversal hori-

zontal distribution H = span{X1, . . . , Xn, Y1, . . . , Yn}, where

Xi = ∂xi −
1

2
yi∂z Yi = ∂yi +

1

2
xi∂z.

Defining a Riemannian metric g so that the vectors Xi, Yi, Z are orthonormal, we

have that (R2n+1,H, g) is an H-type foliation called the Heisenberg group.

This object (for n = 1) is the original motivation for the notion of H(eisenberg)-

type groups [76, 79]. It arises naturally in physics, as horizontal curves in this space

describe the motion of electrons through an electric field. From the sub-Riemannian

perspective, we see this as the model “flat space”. There are many references, see

e.g. [88, 45]. The thesis [90] explicitly describes foliations of the Heisenberg group.

The notion of curvature on H-type foliations (or sub-Riemannian geometry more

generally) is subtle; we will explore throughout the rest of the thesis. There are two

other particular H-type foliations that we want to keep in mind as models of positive

and negative curvature.

To model positive curvature we have the Hopf fibration, associated to the sphere

S2n+1.

Definition 3.3.2. Identify S2n+1 with the set of points z ∈ Cn+1 with ‖z‖ = 1.
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There is a natural S1 action on S2n+1 given by

(z1, . . . , zn+1) 7→ (eiθz1, . . . , e
iθzn+1)

which induces the submersion

S1 ↪→ S2n+1 π−→ CP n.

we have that (S2n+1,H, g) is an H-type foliation called the complex Hopf fibration or

sometimes the CR sphere. See [55, 95] for more details; in [27] the heat kernel for the

sub-Laplacian is explicitly computed.

Analogously we have the model of negative curvature, the Anti-de Sitter space,

associated to the hyperbolic space H2n+1.

Definition 3.3.3. Identify H2n+1 with the set of points z = (z1, . . . , zn+1) ∈ Cn+1

with ‖z‖H :=
∑n

j=1 ‖zj‖2 − ‖zn+1‖2 = −1. We have the natural S1 action

(z1, . . . , zn+1) 7→ (eiθz1, . . . , e
iθzn+1)

which induces the submersion

S1 ↪→ H2n+1 π−→ CHn.

we have that (H2n+1,H, g) is an H-type foliation called the Anti-de Sitter (AdS) fi-

bration. For more details see [43, 49, 95]; in [112] a heat kernel for the sub-Laplacian

is explicitly computed.
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We can analogously extend these constructions to the quaternions and octonions

as in table 3.3.1.

Manifold Fibration References

Quaternionic Hopf fibration S3 ↪→ S4n+3 → HP n [29]
Quaternionic Anti-de Sitter fibration S3 ↪→ H4n+3 → HHn [43] [20]
Octonionic Hopf fibration S7 ↪→ S15 → OP 1 [94] [19]
Octonionic Anti-de Sitter fibration S7 ↪→ H15 → OH1 [43]

Table 3.3.1: Model Quaternionic and Octonionic fibrations

Notice, because of the rigidity of the octonions, their associated fibrations can

only exist over OP 1 and OH1.

3.3.2 Contact and 3K-Contact Manifolds

Recall definition 2.2.6; a 2n+ 1-dimensional manifold M equipped with a differential

form η such that η ∧ (dη)n is a volume form is called a contact manifold.

Proposition 3.3.4. Let (M, η, g) be a contact manifold with compatible Riemannian

metric. Define H = ker η. Then (M,H, g) is an H-type foliation up to a choice of

normalization, see remark 3.2.3.

This follows from the fact that the nonvanishing condition on η∧(dη)n is precisely

the necessary condition for H to be bracket-generating, see [69]. The first examples of

the last section fall under this category. Specifically, we have the contact structures

in table 3.3.2.

We can extend the idea of these constructions to the case rank(V) = 3 by con-

sidering 4n + 3-dimensional manifolds equipped with an R3-valued differential form

η = (η1, η2, η3) constructed from a triple of contact forms. This is analogous to the
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Manifold Contact Structure

Heisenberg group R2n+1 η = dz − 1

2

n∑
i=1

(xidyi − yidxi)

Complex Hopf fibration S2n+1 η =
i

2

n+1∑
j=1

(
zjdzj − zjdzj

)
Anti-de Sitter fibration H2n+1 η =

i

2

(
n∑
j=1

(
zjdzj − zjdzj

)
−
(
zn+1dzn+1 − zn+1dzn+1

))

Table 3.3.2: Contact structures on model fibrations

situation of definition 2.2.26. Under suitable compatibility conditions we recover 3K-

contact manifolds [72, 108], especially the Quaternionic Heisenberg group, and the

Hopf and Anti-de Sitter fibrations as in table 1.3.1.

3.3.3 Twistor Spaces

Because contact structures naturally generate a representation of the complex num-

bers, quaternions, and octonions, these will only give examples in co-dimension 1, 3,

or 8. However, H-type foliations do allow for m = rank(V) to take any dimension. In

the case m = 2, we have the fascinating example of twistor spaces.

Definition 3.3.5. Let (B, j) be a quaternionic-Kähler manifold [35, Chapter 14] of

dimension 4k ≥ 8. Consider the subbundle E ⊆ End(TM) spanned by a triple of

complex structures I, J,K. Define an inner product gE by setting these structures to

be orthonormal, and fix ρ > 0. The subbundle Z ⊂ E determined pointwise as the

sphere of constant gE-radius ρ forms the twistor bundle over B

S2 ↪→ Z → B.
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This is explored in [65, 105], and analogous notions arise over projective and

hyperbolic spaces. These are H-type foliations, and appear on table 1.3.1.

3.4 Parallel Horizontal Clifford Structures

In this section, we consider the covariant derivatives of J ; that is, we investigate what

can we understand of the structure of an H-type foliation from the properties of

(∇XJ)Y = (∇XT )[(·, ·], Y ).

This is of particular interest because, as we will come to see, there is a relationship

between the Riemann curvature tensor and the covariant derivatives of JZ . As dis-

cussed in section 3.2.2 we can extend J to a representation J : Cl(V)→ End(H), and

thus the algebraic structure of Cl(V) can influence the curvature properties of H.

We see that (∇XJ)Y vanishes in the case of completely parallel torsion; in the

case or horizontally parallel torsion the quantity is nontrivial only if X, Y ∈ V . We

recall the identification ∧2V with Cl2(V) from section 3.2.2 and definition 3.2.21.

Definition 3.4.1. Let (M,H, g) be an H-type foliation with horizontally parallel

torsion. We say that (M,H, g) is an H-type foliation with parallel horizontal Clifford

structure if there exists a smooth bundle map Ψ : V × V → Cl2(V) such that for

every Z1, Z2 ∈ Γ(V)

(∇Z1J)Z2 = JΨ(Z1,Z2).

Remark 3.4.2. If m = 1, then the parallel horizontal Clifford assumption is always
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satisfied with Ψ = 0.

This definition is motivated by the analogous notion of Clifford structure on Rie-

mannian manifolds; these were completely characterized by Moroianu and Semmel-

mann in [89]. We summarize the algebraic consequences for Ψ in the following theo-

rem.

Theorem 3.4.3 ([24, Theorem 3.6]). Let (M,H, g) be an H-type foliation with parallel

horizontal Clifford structure. Then there exists a constant κ ∈ R such that Ψ has the

form

Ψ(u, v) = −κ(u · v + g(u, v)).

and the sectional curvature of the leaves of the foliation associated to V is constant

equal to κ2. If the torsion is completely parallel, the leaves are flat.

From this we see that parallel horizontal Clifford structures are fairly rigid, and

thereby give significant information relating Cl(V) to the End(H) generated by the

JZ .

Proof. We refer to [24, theorem 3.6] for the complete proof, but remark that the the

essential steps are in recognizing that the symmetries

1. Ψ(u, v) = −Ψ(v, u);

2. Ψ(u, v) · v + v ·Ψ(u, v) = 0.

hold for all u, v ∈ Vp. The form of Ψ follows from consideration of the possible

homomorphisms Λ2V → Cl2(V) and showing that any other terms vanish due to the

symmetries. That κ2 gives the vertical sectional curvature follows from

Sec(u ∧ v) = g(R(u, v)v, u) = ‖(∇uJ)vw‖2 = κ2
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for any orthonormal v, u ∈ Vp and unit w ∈ Hp, where we applied the first result.

3.4.1 H-type foliations with completely parallel torsion

We begin with the simplest case, that of H-type foliations with completely parallel

torsion. In this setting (∇XJ)Y vanishes, and so we always have parallel horizontal

Clifford structure Ψ = 0.

Theorem 3.4.4 ([24, Theorem 3.8]). Let (M,H, g, π) be an H-type submersion with

completely parallel torsion, and let the base space (B, j) be simply-connected. Then

one of the following (non exclusive) cases occur:

• m = 1, M is Sasakian, and B is Kähler;

• m = 2 or m = 3 and B is locally hyper-Kähler;

• m is arbitrary, M is an H-type group, and B is flat and isometric to a repre-

sentation of the Clifford algebra Cl(Rm).

Proof. We refer to [24] for the complete proof, but highlight here the essential idea

that since the sectional curvature of V vanishes and we have a global submersion we

can see that the maps JZ ∈ End(H) project onto parallel almost complex structures

JZ on B. Then for m = 1 we see that B is Kähler and for m ≥ 2 we see that B is

locally hyper-Kähler. When m ≥ 4 considerations of holonomy force B to be flat and

the theorem follows as a consequence of theorem 4.1.6 and theorem 4.1.7.

From this we see that the completely parallel torsion condition is rigid, and only

allows for the H-type groups in dimension m ≥ 4. The following corollary holds by

observing that H-type foliations are always locally H-type submersions.
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Corollary 3.4.5 ([24, Corollary 3.9]). Let (M,H, g) be an H-type foliation with com-

pletely parallel torsion. If m ≥ 2, then M is horizontally Ricci flat, i.e. RicH = 0. If

m ≥ 4, then M is horizontally flat, i.e. RH = 0.

3.4.2 Horizontal Einstein property

Definition 3.4.6. Let (M,H, g) be a totally geodesic foliation. We say that (M,H, g)

is horizontally Einstein if there exists some constant λ ∈ R such that

RicH(X, Y ) = λgH(X, Y ),

for all X, Y ∈ Γ(H), where RicH is the horizontal Ricci tensor of the Bott connection.

In this section, we prove the following theorem:

Theorem 3.4.7 ([24, Theorem 3.16]). Let (M,H, g) be an H-type foliation with a

parallel horizontal Clifford structure and m ≥ 2. Then

• if m 6= 3 or if m = 3 and (M,H, g) is quaternionic,

RicH = κ
(n

4
+ 2(m− 1)

)
gH,

• otherwise (when m = 3 and (M,H, g) is not of quaternionic type) then at any

point, H orthogonally splits as a direct sum H+ ⊕H− and for X, Y ∈ Γ(H),

RicH(X, Y ) = κ
(n

4
+ 4
)
〈X, Y 〉+

κ

4
(dimH+ − dimH−)〈σ(X), Y 〉,

where σ = IdH+ ⊕ (−IdH−).



81

Remark 3.4.8. In the special case m = 3, but M is not quaternionic, the splitting

Hp = H+
p ⊕H−p is related to the case of self-dual manifolds in dimension 4. Notably,

∇Hσ = 0 and so the splitting is independent of the point p. In all other cases,

(M,H, g) is horizontally Einstein.

In the case m = 2, the fact that (M,H, g) is horizontally Einstein is related to

the fact that quaternion Kähler manifolds are Einstein manifolds (see Berger [33],

Ishihara [71] or Besse [35, theorem 14.39]), and the algebraic structure of our proof

below somehow parallels the one of Ishihara and Besse (in the choice of a special

horizontal basis). The key lemma is the following:

Lemma 3.4.9 ([24, Lemma 3.18]). Let (M,H, g) be a totally geodesic foliation with

horizontally parallel torsion. For any X, Y ∈ Γ(H) and Z ∈ Γ(V), we have

[
RH(X, Y ), JZ

]
= (∇T (X,Y )J)Z + J(∇ZT )(X,Y ).

Proof. Write the Hessian operator for ∇ as ∇2
X,Y = ∇X∇Y − ∇∇XY . Using that J

is parallel in horizontal directions and that R(X, Y ) = ∇2
X,Y − ∇2

Y,X + ∇T (X,Y ), we

observe that for X, Y ∈ Γ(H) we have

R(X, Y )J = ∇T (X,Y )J.

However, for W ∈ Γ(H) and Z ∈ Γ(V), we can also write

(R(X, Y )J)ZW = R(X, Y )JZW − JR(X,Y )ZW − JZR(X, Y )W

= RH(X, Y )JZW − J(∇ZT )(X,Y )W − JZRH(X, Y )W.

The result follows.
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This gives us an important structural result in our setting.

Lemma 3.4.10. Let (M,H, g) be an H-type foliation with a parallel horizontal Clif-

ford structure and m ≥ 2. Let Z1, . . . , Zm be a local vertical orthonormal frame. It

will hold that

[
RH(X, Y ), Ji

]
= κ

m∑
j=1,j 6=i

(
〈JjX, Y 〉Jij − 〈JijX, Y 〉Jj

)
. (3.4.1)

Proof. We first observe that from Lemma 3.4.9 together with the parallel horizontal

Clifford structure assumption, one obtains that for every X, Y ∈ Γ(H),

[
RH(X, Y ), Ji

]
= (∇T (X,Y )J)Zi + J(∇ZiT )(X,Y )

= −κJT (X,Y )·Zi+〈T (X,Y ),Zi〉 + J(∇ZiT )(X,Y ).

Then, we note that

T (X, Y ) · Zi + 〈T (X, Y ), Zi〉 = −
m∑

j=1,j 6=i

〈JjX, Y 〉Zi · Zj,

and that

J(∇ZiT )(X,Y ) =
m∑
j=1

J〈(∇ZiT )(X,Y ),Zj〉Zj =
m∑
j=1

J〈(∇ZiJ)ZjX,Y 〉Zj = −κ
m∑

j=1,j 6=i

〈JijX, Y 〉Jj.

Combining the previous expressions completes the lemma.

We will also need the following lemma in the case m = 3 and (M,H, g) is non-

quaternionic.
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Lemma 3.4.11 ([24, Lemma 3.19]). Let (M,H, g) be a totally geodesic foliation with

horizontally parallel torsion and m = 3. Let Z1, Z2, Z3 be a local orthonormal frame

of V. Then (M,H, g) is of quaternionic type if and only if JZ1JZ2JZ3 ∈ {−IdH, IdH}.

If (M,H, g) is not of quaternionic type, then σ = JZ1JZ2JZ3 is a non-trivial horizontal

isometry such that σ2 = IdH and that commutes with JZ1 , JZ2 , JZ3.

We reproduce the complete proof of theorem 3.4.7 from [24].

Proof of theorem 3.4.7. We fix i, and j 6= i. Note that Ji, Jj, Jij satisfy the quaternion

relations, J2
i = J2

j = J2
ij = JiJjJij = −IdH. Choose a local orthonormal basis X` of

H such that if X` is in the basis, so are JiX`, JjX`, JijX` (up to a ± sign); this can

be done by lemma 3.2.7. We then compute for X, Y ∈ Γ(H),

RicH(X, JiY ) = −
n∑
`=1

〈RH(X,X`)JiY,X`〉

= −
n∑
`=1

〈[RH(X,X`), Ji]Y,X`〉 −
n∑
`=1

〈JiRH(X,X`)Y,X`〉

= −
n∑
`=1

〈[RH(X,X`), Ji]Y,X`〉+
n∑
`=1

〈RH(X,X`)Y, JiX`〉 .

On one hand, one obtains from (3.4.1):

n∑
`=1

〈[RH(X,X`), Ji]Y,X`〉 = κ

n∑
`=1

m∑
j=1,j 6=i

(
〈JjX,X`〉〈JijY,X`〉 − 〈JijX,X`〉〈JjY,X`〉

)
= κ

m∑
j=1,j 6=i

(
〈JjX, JijY 〉 − 〈JijX, JjY 〉

)
= 2κ(m− 1)〈JiX, Y 〉.

On the other hand, noticing that the set of −JiX`⊗X` and the set of X`⊗ JiX` will
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be identical as X` varies across the whole basis, one obtains

n∑
`=1

〈RH(X,X`)Y, JiX`〉 =
1

2

n∑
`=1

(
〈RH(X,X`)Y, JiX`〉 − 〈RH(X, JiX`)Y,X`〉

)
=

1

2

n∑
`=1

〈RH(X, Y )X`, JiX`〉 ,

where the second equality follows from Bianchi’s identity and symmetries of the cur-

vature tensor. It therefore remains to compute
∑n

`=1 〈RH(X, Y )X`, JiX`〉. We use

the fact that the set of X` ⊗ JiX` and the set of JjX` ⊗ JijX` will be identical as X`

varies across the whole basis to obtain

2
n∑
`=1

〈RH(X, Y )X`, JiX`〉 =
n∑
`=1

〈RH(X, Y )X`, JiX`〉+ 〈RH(X, Y )JjX`, JijX`〉

=
n∑
`=1

〈RH(X, Y )X`, JjJijX`〉+ 〈RH(X, Y )JjX`, JijX`〉

=
n∑
`=1

−〈JjRH(X, Y )X`, JijX`〉+ 〈RH(X, Y )JjX`, JijX`〉

=
n∑
`=1

〈[RH(X, Y ), Jj]X`, JijX`〉 .

Now, from (3.4.1):

n∑
`=1

〈[RH(X, Y ), Jj]X`, JijX`〉

= κ

n∑
`=1

m∑
k=1,k 6=j

(
〈JkX, Y 〉 〈JjkX`, JijX`〉 − 〈JjkX, Y 〉 〈JkX`, JijX`〉

)
.

If k 6= i, one has 〈JjkX`, JijX`〉 = 0 and if k = i, 〈JjkX`, JijX`〉 = −1. Therefore,
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one obtains:

n∑
`=1

〈[RH(X, Y ), Jj]X`, JijX`〉

= −κn〈JiX, Y 〉 − κ
m∑

k=1,k 6=j

n∑
`=1

〈JjkX, Y 〉 〈JkX`, JijX`〉 .

The analysis of the sum
∑n

`=1 〈JkX`, JijX`〉 will depend on m. If m = 2, then one

has
∑n

`=1 〈JkX`, JijX`〉 = 0, because one must have k = i. If m ≥ 4, then one can

pick an index s which is different from i, j and k so that by using invariance of the

trace by a change a basis:

n∑
`=1

〈JkX`, JijX`〉 =
n∑
`=1

〈JkJsX`, JijJsX`〉 = −
n∑
`=1

〈JkX`, JijX`〉 .

Therefore
∑n

`=1 〈JkX`, JijX`〉 = 0. Summarizing the above computations, one de-

duces that for i 6= j 6= k,

RicH(X, JiY ) =


−2κ(m− 1)〈JiX, Y 〉 − κn

4
〈JiX, Y 〉, if m 6= 3

−4κ〈JiX, Y 〉 − κn
4
〈JiX, Y 〉+ κ

4
〈JjkX, Y 〉TrH(JiJjJk), if m = 3.

Therefore, substituting Y by JiY one concludes

RicH(X, Y ) =


2κ(m− 1)〈X, Y 〉+ κn

4
〈X, Y 〉, if m 6= 3

4κ〈X, Y 〉+ κn
4
〈X, Y 〉+ κ

4
〈J1J2J3X, Y 〉TrH(J1J2J3), if m = 3.

By denoting σ = J1J2J3, H+ the 1 eigenspace of σ andH− the −1 eigenspace of σ, one

can then concludes with Lemma 3.4.11. We note that σ2 = IdH, thus ∇Hσ = 0.
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3.4.3 Sub-Riemannian diameter and first eigenvalue estimates

Combining theorem 3.4.7 with the results of corollary 3.2.28, we obtain the following.

Theorem 3.4.12 ([24, Corollary 3.20]). Let (M,H, g) be an H-type foliation with a

parallel horizontal Clifford structure such that κ > 0. Then, M is compact with finite

fundamental group. Moreover,

• If m 6= 3 or m = 3 and (M,H, g) is of quaternionic type then we have the

sub-Riemannian diameter bound

diam(M, dcc) ≤ 4
√

3
π√
κ

√
(n+ 4m)(n+ 6m)

n(n+ 8(m− 1))
,

and we have the following estimate for the first eigenvalue of the sub-Laplacian

λ1 ≥
κ

4

n(n+ 8(m− 1))

n+ 3m− 1
.

• If m = 3 and (M,H, g) is not of quaternionic type, then we have the sub-

Riemannian diameter bound

diam(M, dcc) ≤ 2
√

6
π√
κ

√
(n+ 12)(n+ 18)

n(n+ 8)
,

and we have the following estimate for the first eigenvalue of the sub-Laplacian

λ1 ≥
nκ

2
.
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Remark 3.4.13. Compare this with [97], in which it is shown that the estimate

λ1 ≥
nπ2

diam(M, dcc)2

holds, which is sharp and agrees with our result on the complex and quaternionic

Hopf fibrations.



Chapter 4

Holonomy of H-type Foliations

In this chapter we will explore the collection of endomorphisms of Hp induced by

Bott-parallel transport around loops at a point p. This is an extension of the idea

of holonomy from Riemannian geometry, where it is well-known that the structure of

such groups has strong consequences for the geometry of the underlying manifold.

4.1 Riemannian holonomy

On a Riemannian manifold (M, g) equipped with a metric connection ∇, there is a

notion of parallel transport section 2.1.1; given a curve γ : [0, T ] → M and a vector

x ∈ Tγ(0)M, we say that a vector field X such that X(γ(0)) = x and ∇γ̇X = 0 is a

parallel transport for x along γ. This induces a family of isomorphisms

τγ(t) : Tγ(0)M→ Tγ(t)M

88
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for all 0 ≤ t ≤ T . In particular, if γ is a loop at a fixed point p ∈ M this gives an

endomorphism of TpM.

Definition 4.1.1. We denote by Hol(M, p) the collection of endomorphisms of TpM

induced by ∇-parallel transport along loops at p. This forms a group by composition,

and is called the holonomy group of M at p. Restricting to only the loops homotopic

to the constant loop at p, we have the restricted holonomy group at p, Hol0(M, p).

Proposition 4.1.2. Let (M, g) be a Riemannian manifold with metric connection ∇.

• If M is connected, Hol(M, p) is independent of the choice of p ∈M, and so we

write simply Hol(M).

• Every element of Hol(M) is an isometry.

Proof. The proofs are straightforward, we refer to [77, chapter 2].

One can characterize the infinitesimal generators of the holonomy group in terms

of the associated Riemann curvature tensor.

Theorem 4.1.3 (Ambrose-Singer [8]). Let (M, g) be a Riemannian manifold with

metric connection ∇. For p ∈ M, the Lie algebra hol(M, p) of Hol(M, p) is exactly

the sub-algebra of so(TpM) generated by the elements τ−1
γ ◦R(τγu, τγv) ◦ τγ where u, v

run through TpM and γ through Cp.

Proof. This is explained thoroughly by [35, theorem 10.58, note 10.59].

Remark 4.1.4. We emphasize a note made in [35], that this result remains true

without modification for any metric connection ∇.

We can also simplify the study of holonomy groups to those that are irreducible.
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Theorem 4.1.5 (deRham [53]). Let (M, g) be a complete, simply connected Rieman-

nian manifold. Then Hol(M) is reducible as a direct product if and only if (M, g) is

reducible as a Riemannian product.

Holonomy associated to Levi-Civita connection

In particular, the holonomy group Hol(M) associated to the Levi-Civita connection

is referred to as the Riemannian holonomy group; there is a complete classification

of the possible Riemannian holonomies, as follows.

Theorem 4.1.6 (Berger [33], Simons [106]). Suppose (M, g) is a Riemannian mani-

fold with irreducible Hol0(M). Then one of the following (nonexclusive) cases occur:

• M is locally symmetric and is of rank at least 2, or

• Hol0(M) acts transitively on the sphere.

Simons’ proof [106] relies on the Ambrose-Singer theorem 4.1.3. One assumes

that Hol0(M) does not act transitively on the sphere, and after a lengthy algebraic

argument one concludes the proof using the equivalence of local symmetry with the

statement ∇R = 0 shown by Cartan. A modern, geometric proof based on the

holonomy of submanifolds was established by Olmos [93].

The holonomy of symmetric spaces is rather involved, but is completely classified

by a series of results due to Cartan [47, 48]. See [78] for an introduction to the

holonomy of symmetric spaces.

In the nonsymmetric case, the list of possible holonomy groups is rather short.

This is a consequence of a classification of Lie groups acting transitively on the sphere

due to Cartan.



91

Theorem 4.1.7. For an irreducible, simply connected, nonsymmetric Riemannian

manifold manifold M, one of the following cases occurs:

dim(M) Hol0(M) Type

n arbitrary O(n) Generic

n arbitrary SO(n) Oriented

n = 2m U(m) Kähler

n = 2m SU(m) Calabi-Yau

n = 4m Sp(m) · Sp(1) Quaternion-Kähler

n = 4m Sp(m) Hyperkähler

n = 7 G2 G2 manifold

n = 8 Spin(7) Spin(7) manifold

This is the complete list of Lie groups acting transitively on the sphere, with

the exception of T · Sp(m) and Spin(9). Topological considerations rule out T ·

Sp(m). Spin(9) occurs, but only for symmetric spaces. The remainder have been

shown to exist explicitly; in particular the existence of G2 and Spin(7) manifolds was

difficult, but was established by Bryant in [41, 42]. See [35, chapter 10] for a complete

discussion.

4.2 Adapted holonomy of foliations

In this section we introduce a notion of horizontal holonomy for foliations associated

to adapted connections.

Let (M,H, g) be a totally geodesic Riemannian foliation with bundle-like metric,

and denote by ∇ an adapted connection. Denote the Bott connection by ∇. If p ∈M



92

and γ : [0, T ] → M is a piecewise-C1 curve, let us denote by τγ : TpM → Tγ(p)M the

∇-parallel transport along γ. Since ∇ is metric, τγ is an element of the orthogonal

group O(TpM, Tγ(p)M). Moreover, since ∇ preserves H and V , one has

τγ(Hp) ⊆ Hγ(p), τγ(Vp) ⊆ Vγ(p).

Therefore τγ induces an isometry τγ|H ∈ O(Hp,Hγ(p)) and an isometry τγ|V ∈ O(Vp,Vγ(p)).

Denote by Cp the set of piecewise-C1 loops based at p ∈ M. We introduce the

following holonomy groups associated to the connection ∇.

Definition 4.2.1. Let p ∈M. We call the subgroups of O(Hp) and O(Vp) generated

by the set of all τγ|H and τγ|V , γ ∈ Cp the horizontal holonomy group at p denoted

by Hol(H, p) and the vertical holonomy group at p denoted by Hol(V , p), respec-

tively. When restricting to the subset C0
p ⊆ Cp consisting only of loops homotopic to

the identity, we get the restricted holonomy subgroups denoted by Hol0(H, p) and

Hol0(V , p).

The horizontal holonomy groups are all isomorphic. This enables us to talk of

the horizontal holonomy group of (M,H, g) which we will denote Hol(H),Hol0(H).

Similarly, we can talk of Hol(V), and Hol0(V).

Remark 4.2.2. These constructions are invariant by the rescaling gε.

We have the following theorem describing the infinitesimal generators of the holon-

omy groups.

Theorem 4.2.3. Let (M,H, g) be an H-type foliation with horizontally parallel tor-

sion. For p ∈ M, the Lie algebra hol(H, p) of Hol(H, p) is exactly the sub-algebra of
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so(Hp) generated by the elements τ−1
γ ◦ RH(τγu, τγv) ◦ τγ where u, v run through Hp

and γ through Cp.

Proof. This is a straightforward consequence of the Riemannian Ambrose-Singer the-

orem 4.1.3 and lemma 3.2.5.

Remark 4.2.4. Analogously to remark 4.1.4, the theorem will remain true for any

connection with horizontally parallel torsion. This is essential, as otherwise lemma 3.2.5

will not hold.

Corollary 4.2.5. Suppose (M,H, g) is an H-type foliation with completely parallel

torsion. If m ≥ 4 then RH = 0 and so Hol(H) = Id.

4.3 Holonomy of H-type foliations

In this section we explore the horizontal holonomy of H-type foliations. In particular

we relate the horiztonal holonomy of H-type submersions to the holonomy of the base

space.

4.3.1 Holonomy of H-type submersions

Let (M,H, g, π) be an H-type submersion with base space (B, j). Assume that B is

connected. We write ∇M,∇B for the Levi-Civita connections on M and B, and ∇ for

the Bott connection on (M,H, g).

In this section, we will characterize the holonomy of H-type submersions in terms

of the holonomy of the associated base space. To begin, we will leverage the fact that

we are working on global submersions by defining the notion of basic vector field that

will be key to our study of the holonomy.
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Definition 4.3.1. We say X ∈ Γ(TM) is projectable if there exists X̄ ∈ Γ(TB) such

that dπ(X) = X̄. We will say X and X̄ are π-related. Moreover, if X ∈ Γ(H) is

projectable we say X is basic.

Basic vector fields are ubiquitous in the study of submersions and foliations. See

for example [35, 110, 87, 66].

Lemma 4.3.2. Associated to any vector field X̄ ∈ Γ(TB) there is an unique basic

π-related vector field X ∈ Γ(H).

Lemma 4.3.3. Let X, Y ∈ Γ(TM) be projectable, and let Z ∈ Γ(V).

• [X, Y ] is projectable and π-related to [X̄, Ȳ ].

• [X,Z] is vertical.

Proof. We refer the reader to [35] for the straightforward proofs of the lemmas.

Remark 4.3.4. While basic fields are only sensible for submersions, we recall that

foliations are always locally submersions and so the notion of basic fields can also

sometimes be useful for local computations on general foliations.

Let RB denote the Riemann curvature tensor on B for the Levi-Civita connection,

and RH as in lemma 3.2.5. We will focus on the relationship between these, for which

the notion of basic fields is a useful tool.

Lemma 4.3.5. Let X,Y,Z be basic vector fields on M, and denote by RB the Riemann

curvature tensor on B. Then RH(X, Y )Z is basic and is π-related to RB(X̄, Ȳ )Z̄.

Proof. Observe that on M,

∇prV [X,Y ]Z = −∇T (X,Y )Z = − prH[T (X, Y ), Z] = 0
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where we use properties of the Bott connection for the first two equalities and

lemma 4.3.3 for the last. As a consequence,

RH(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇prH[X,Y ]Z

We now establish the following

Lemma 4.3.6. For basic vector fields X, Y on M,

• ∇XY is basic and π-related to ∇B
X̄
Ȳ

• prH[X, Y ] is basic and π-related to [X̄, Ȳ ]

Proof. First, that ∇B
X̄
Ȳ is π-related to prH(∇M

XY ) follows from writing the lift of

∇B
X̄
Ȳ in a local coordinate chart using the Christoffel symbols. Then since X and Y

are horizontal, ∇XY = prH(∇M
XY ) follows from the properties of the Bott connection

and the first claim is established.

The second claim follows directly from lemma 4.3.3.

Applying the lemma, we compute on B that

RB(X̄, Ȳ )Z̄ = ∇B
X̄∇

B
Ȳ Z̄ −∇

B
Ȳ∇

B
X̄Z̄ −∇

B
[X̄,Ȳ ]Z̄

= ∇X∇YZ −∇Y∇XZ −∇prH[X,Y ]Z.

and the lemma follows.

Denote by Hol(B, p̄) the holonomy group of B at p̄ ∈ B for the Levi-Civita con-

nection, and by hol(B, p̄) its Lie algebra. These are again isomorphic for all p̄ ∈ B,

and so we can write Hol(B) and hol(B).
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In the following, we consistently denote by γ : [0, T ] → M piecewise-smooth hor-

izontal curves, set p = γ(0), and their ∇-parallel transport by τt,γ : TpM → Tγ(t)M.

Similarly, we denote by γ̄ : [0, T ] → B piecewise-smooth curves, p̄ = γ̄(0), and their

∇B-parallel transport by τ̄t,γ̄ : Tp̄B→ Tγ̄(t)B. We will also write τγ = τT,γ and τ̄γ̄ = τ̄T,γ̄

when convenient.

Theorem 4.3.7. For an H-type submersion (M,H, g, π),

Hol0(H) ∼= Hol
0
(B)

Proof. For p ∈M, we want to relate the Lie algebras hol(H, p) and hol(B, π(p)). Using

the Ambrose-Singer theorem and our theorem 4.2.3, this is reduced to studying the

parallel transports τγ, τ̄γ̄ and curvature tensors RH and RB.

We need the following

Lemma 4.3.8. Suppose γ is a piecewise-C1 curve on M and let γ̄ be the piecewise-C1

curve on B determined by γ̄(t) = π(γ(t)). Let u ∈ Hp and set ū = dpπ(u) ∈ Tp̄B.

Then for all t ∈ [0, T ],

dγ(t)π(τt,γ(u)) = τ̄t,γ̄(ū).

Proof. Let Y (t) = τt,γ(u) and Ȳ : [0, T ]→ TB be the pushforward

Ȳ (t) = dγ(t)π(Y (t)) ∈ Tγ̄(t)B.

Then

DB
t Ȳ = dγ(t)π(DtY ) = 0

since Y is the ∇-parallel transport of u (where DB, DM, D are the respective covariant
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derivatives along γ, which do not depend on the choice of extension of Y, Ȳ , γ′, and

γ̄′). Thus Ȳ is the ∇B-parallel transport of ū along γ̄, and the lemma follows from

the uniqueness of parallel transport.

Now fix p ∈ M; there is a one-to-one correspondence between piecewise-smooth

horizontal curves γ on M with γ(0) = p and piecewise-smooth curves γ̄ on B with

γ̄(0) = π(p) determined by the projection. For any such pair of curves and π-

related pairs of vectors x, y, z ∈ Hp, x̄, ȳ, z̄ ∈ Tπ(p)B an application of lemma 4.3.5

and lemma 4.3.8 give us that

dpπ(τ−1
γ RH(τγ(x), τγ(y))τγz) = τ̄−1

γ̄ RB(τ̄γ̄(x̄), τ̄γ̄(ȳ))τ̄γ̄ z̄

and so by theorem 4.2.3

hol(H, p) ∼= hol(B, π(p))

and the theorem follows.

Recalling theorem 3.2.12, we have a complete list of the possible horizontal holonomies

of H-type submersions.

4.3.2 Holonomy of H-type foliations with horizontally paral-
lel Clifford structure

We now consider the more general setting of foliations that are not globally submer-

sions. In view of theorem 4.2.3, to study the horizontal holonomy group Hol(H) the

study of the symmetries of the horizontal endomorphisms RH will be of paramount
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importance. Given an horizontally parallel Clifford structure, we recall the useful

lemma 3.4.10.

Lemma 4.3.9. Let (M,H, g) be an H-type foliation with m = rank(V) ≥ 2 and

parallel horizontal Clifford structure Ψ(u, v) = −κ(u · v + 〈u, v〉). Then

[RH(u, v), Jz] = κ
m∑

j=1,j 6=i

(
〈Jju, v〉Jij − 〈Jiju, v〉Jj

)
.

for all u, v ∈ Hp, z ∈ Vp.

In particular, we consider the cases when the right hand side has particularly nice

structure.

Corollary 4.3.10. Let (M,H, g) be an H-type foliation with parallel horizontal Clif-

ford structure.

• If κ = 0 then RH(u, v) commutes with Jz.

• If M is quaternionic, that is if m = 3 and a(p) = {Jz, z ∈ V} ∼= so(3), then

RH(u, v) will preserve a(p).

From this, the following structural theorem suggested by theorem 3.4.7 will follow.

Theorem 4.3.11. Let (M,H, g) be an H-type foliation with parallel horizontal Clif-

ford structure, and set n = rank(H),m = rank(V).

(a) If m = 1, then Hol0(H) is isomorphic to a subgroup of U(n/2).

(b) If m ≥ 2 and κ = 0, then Hol0(H) is isomorphic to a subgroup of Sp(n/4).

(c) If m = 3 and and the maps Jz, z ∈ V form a Lie algebra under commutation at

every point, then Hol0(H) is isomorphic to a subgroup of Sp(1)Sp(n/4)
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Proof. Let p ∈ M be a chosen base point, γ ∈ C0
p . The strategy of the proof is to

explicitly construct appropriate complex and symplectic forms.

(a) If m = 1, then Hol(V) = 1, so τγz = z for any z ∈ Vp and since J is also parallel

we have τγJz = Jzτγ. Fix a unit vector z ∈ Vp, and then J = Jz = T [(·, ·, z)]1 will

be a complex structure on TpM. We can now define a complex inner product on

Hp by

〈u,w〉p,C = gp,H(u,w + Jw)

We will then have 〈τγu, τγw〉p,C = 〈u,w〉p,C, which implies τγ ∈ U(n/2).

Since rankV = 1 it must be that RH(u, v) will commute with J . The result

follows from theorem 4.2.3.

(b) We note that since κ = 0, we have that J is parallel and that RV = 0, so

Hol(V) = 1. Fixing orthogonal unit vectors z1, z2 ∈ Vp we can define Jk = Jzk

for k = 1, 2. We note that J1J2 = −J2J1 and that τγJk = Jkτγ. We use J1 as

a complex structure on Hp and repeat the argument in (a) to show that, with

respect to the appropriate choice of basis, τγ ∈ U(n/2). Furthermore,

ω(u, v) = 〈J1u, v〉H + i〈J1J2u, v〉H, u, v ∈ Hp,

is a complex symplectic form on Hp, meaning that relative to the same basis

τγ ∈ Sp(n/4).

Since κ = 0 we have that RH(u, v) will commute with any Jk by corollary 4.3.10.

The result follows from theorem 4.2.3.

(c) From our assumption, it follows that the subbundle {Jz ∈ End(Hp) : z ∈ V} is
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preserved under parallel transport. Hence there is some map Q ∈ End(Vp) such

that τγJzv = JQzτγv. Furthermore, we have that for any unit vector v ∈ Hp,

gp,V(z1, z2) = gp,H(τγJz1v, τγJz2v) = gp,H(JQz1τγv, JQz2τγv) = gp,V(Qz1, Qz2)

so Q is an (orientation preserving) isometry as well. Since a(p) is a subalgebra

of the skew-symmetric endomorphisms isomorphic to sp(1), there exists a unique

element A ∈ exp{Jz : z ∈ Vp} such that

AJzA
−1z = τγJzτ

−1
γ = JQz.

It follows that τ̃γ := A−1τγ satisfies τ̃γJz = Jz τ̃γ. By similar arguments as in (b),

it follows that τ̃γ can be made unitary and symplectic.

By corollary 4.3.10, RH(u, v) will preserve a(p). The result follows from theo-

rem 4.2.3.

Remark 4.3.12. The outstanding cases occur for m ≥ 2, κ 6= 0, excluding the

quaternionic case for m = 3. Equivalently, these are the cases for which a(p) ∼=

{Jz1 , [Jz1 , Jz2 ] : z1, z2 ∈ Vp} ∼= so(m+ 1).



Chapter 5

Sub-Riemannian Comparison
Theorems on H-Type Foliations

Much of the content of this chapter overlaps with a paper coauthored with Baudoin,

Grong, and Rizzi in 2019. For the complete proofs of those results we will refer to

the original paper [25].

In this chapter we consider the sub-Riemannian structure of H-type foliations as

the limit of Riemannian metrics. In particular, we study the distance function and

are able to recover purely sub-Riemannian comparison results that classically rely

on Ricci curvature bounds that cannot naturally exist as limits of the Riemannian

structure.

5.1 Riemannian comparison theorems

One well-established approach to Riemannian geometry is through comparison prin-

ciples; one computes precisely some quantity of interest on model spaces then deter-

101
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mines under what conditions a manifold can be compared to the model spaces, and

thereby estimates can be established. For example, we can consider bounds on the

distance function and its Laplacian.

Fix a point p in a Riemannian manifold (M, g) equipped with the Levi-Civita

connection ∇g. We can define the distance function rp : M→ R by

rp(q) = dg(p, q)

which is smooth outside of the cut locus Cutg(p). The properties of this function are

of great interest. An upper bound on it establishes a diameter bound, since we can

see that

diam(M, dg) = sup
p,q∈M

rp(q).

For example, given a Ricci curvature condition we have a comparison result on the

diameter as follows.

Theorem 5.1.1 (Bonnet-Myers [91]). Let (M, g) be an n-dimensional Riemannian

manifold equipped with the Levi-Civita connection. Then if there exists a constant

ρ > 0 such that

Ric ≥ (n− 1)ρ

then the diameter bound

diam(M, dg) ≤
π
√
ρ

holds and the manifold is compact with finite fundamental group.

This theorem is established by consideration of the Hessian of the distance func-

tion, and comparison with the model space of positive curvature, the sphere, where
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it holds that

Ric = (n− 1)ρ

diam(Sn, dg) =
π
√
ρ

There is a rigidity theorem stating that the sphere uniquely expresses this property.

Theorem 5.1.2 (Cheng [50]). Suppose (M, g) is an n-dimensional Riemannian man-

ifold equipped with the Levi-Civita connection and such that Ric ≥ (n− 1)ρ. If there

exist points p, q ∈M such that

dg(p, q) =
π
√
ρ

then M is isometric to the n-dimensional sphere Sn.

Under the same conditions on the Ricci curvature, there is a classical estimate for

the Laplacian of the distance function. We define for later convenience the following

function.

Definition 5.1.3 (Riemannian comparison function).

FRiem(r, k) =



√
k cot

√
kr if k > 0

1
r

if k = 0√
|k| coth

√
|k|r if k < 0

In terms of this function we have the following comparison result.

Theorem 5.1.4 (Laplacian comparison theorem). Suppose (M, g) is an n-dimensional

Riemannian manifold equipped with Levi-Civita connection and that there exists ρ ∈ R
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such that Ric ≥ (n− 1)ρ. Then

∇r ≤ FRiem(r, ρ).

The proof follows from establishing bounds on the Hessian evaluated on Jacobi

fields, and follows as a solution of a Riccati equation; it can be considered to be a

special case of the Rauch comparison theorem [99, 44, 34]. See [83, 96] for a modern

presentation.

5.2 H-type foliations as limits of Riemannian Man-

ifolds

Let (M,H, g) be an H-type foliation. In previous sections we’ve seen that we can

study the sub-Riemannian geometry by investigating the J map, relating properties

of V and especially Cl(V) to that of H. There is, however, a stronger sense in which

we can construct the purely sub-Riemannian structure (M,H, gH) as a limit. Recall

the notion of penalty metric from section 1.2.1.

Definition 5.2.1. Let (M,H, gH) be a sub-Riemannian manifold, and let (M, g) be

a Riemannian manifold such that g = gH ⊕ gV is an extension of gH. We define the

associated penalty metric

gε = gH ⊕
1

ε
gV

In the particular case of H-type foliations we have the Gromov-Hausdorff conver-

gence theorem 1.2.2, but also a stronger statement that is essential to our approach

to sub-Riemannian comparison theorems.



105

Theorem 5.2.2. Let (M,H, g) be an H-type foliation equipped with the penalty metric

gε. The convergence dε
ε→0+−−−→ d0 = dcc is uniform on compact sets.

Proof. This is subtle, and one of the motivating reasons for the study of H-type

foliations. We refer to [25] for details of this result, as well as [1, 102] for further

discussion of the convergence of distance functions in this sense.

5.2.1 The comparison principle for H-type foliations

We begin by observing that the Bott connection is extremely useful for the study of

penalty metrics.

Lemma 5.2.3. Let (M,H, g) be an H-type foliation equipped with the Bott connection

∇, and let gε = gH ⊕ 1
ε
gV be the associated penalty metric. Then ∇ is gε-metric for

all ε > 0.

Proof. Let ε > 0. Then

(∇Xgε)(Y, Z) = X · gε(Y, Z)− gε(∇XY, Z)− gε(Y,∇XZ)

= X ·
(
gH(Y, Z) +

1

ε
gV(Y, Z)

)
−
(
gH(∇XY, Z) +

1

ε
gV(∇XY, Z)

)
−
(
gH(Y,∇XZ) +

1

ε
gV(Y,∇XZ)

)
= X · g(prH Y, prH Z)− g(∇X prH Y, prH Z)− g(prH Y,∇X prH Z)

+
1

ε
(X · g(prV Y, prV Z)− g(∇X prV Y, prV Z)− g(prV Y,∇X prV Z))

= (∇Xg)(prH Y, prH Z) +
1

ε
(∇Xg)(prV Y, prV Z) = 0
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where we use in an essential way that for the Bott connection prE∇XY = ∇X prE Y .

We will be studying the Jacobi equation, and as a consequence it will be desirable

to have a metric adjoint connection as in section 2.3. Therefore we define for ε > 0

the map Jε = 1
ε
J and write

∇̂ε
XY = ∇XY + JεXY, (5.2.1)

following the notation of [23]. Its adjoint is then given by

∇ε
XY = ∇XY − T (X, Y ) + JεYX.

We stress that both ∇̂ε and ∇ε are gε-metric for any ε > 0.

Let R̂ε(X, Y ) = ∇̂ε
X∇̂ε

Y − ∇̂ε
Y ∇̂ε

X − ∇̂ε
[X,Y ] be the Riemann curvature tensor

of ∇̂ε. By section 2.3.2 we see that a vector field W along a gε-geodesic γ is a Jacobi

field if and only if it satisfies the Jacobi equation Z(W ) = 0 for the Jacobi operator

Z(W ) = ∇̂ε
γ̇∇ε

γ̇W + R̂ε(W, γ̇)γ̇

We can establish a comparison principle as in section 2.3.2 for H-type foliations

in terms of the penalty metric gε.

Theorem 5.2.4 ([25, Theorem 2.11]). Let (M,H, g) be an H-type foliation.

• Let gε = gH ⊕ 1
ε
gV be the associated penalty metric, and fix ε > 0.

• Choose x ∈ M and y /∈ Cutε(x), and let γε : [0, rε] → M be the unique gε-

geodesic, parametrized with unit speed, joining x with y.
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• For ` ∈ N, let W1, . . . ,W` be vector fields along γε and gε-orthogonal to γ̇ε such

that ∑̀
i=1

∫ r

0

gε(Z(Wi),Wi) dt ≥ 0. (5.2.2)

Then, at y = γε(rε), it holds

∑̀
i=1

Hess∇̂
ε
(rε)(Wi,Wi) ≤

∑̀
i=1

gε(Wi(rε), ∇̂ε
γ̇εWi(rε)), (5.2.3)

where equality holds if and only if W1, . . . ,W` are Jacobi fields for the metric gε.

Proof. This is simply the special case of theorem 2.3.13 where the metric is parame-

terized by ε > 0.

Lemma 5.2.5 ([25, Lemma 2.12]). If u is sufficiently regular, then one has

Hess∇̂
ε
(u)(W,W ) = Hess∇(u)(W,W ) +

1

ε
g(JprV Wdu

], prHW )

Proof. For a g-metric connection ∇ there is a known expression for the Hessian,

Hess∇(u)(X, Y ) = (∇Xdu)Y = g(∇Xdu
], Y ).

Applying lemma 5.2.3 and the defining equation eq. (5.2.1) we can compute

Hess∇̂
ε
(u)(W,W ) = gε((∇W + JεW )du],W )

= Hess∇(u)(W,W ) + g(JεWdu
],W )

and the result follows from properties of the Jε = 1
ε
J map.
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Corollary 5.2.6. If the Wi in theorem 5.2.4 are horizontal at y = γ(rε), then the

Hessian in (5.2.3) can be computed equivalently using the Hessian for ∇; that is

∑̀
i=1

Hess∇(rε)(Wi,Wi) ≤
∑̀
i=1

gε(Wi(rε), ∇̂ε
γ̇εWi(rε)),

Remark 5.2.7. This corollary is essential, as it implies that Hess∇(rε) can be con-

trolled by consideration of fields satisfying a differential equation in ε. The main

results will follow from establishing formulas uniform in ε > 0 and then taking the

sub-Riemannian limit.

In order to verify condition (5.2.2) of theorem 5.2.4 it will be useful to write

explicitly the Jacobi operator in terms of the Bott connection and its curvature. In

the next lemma we do this for the case of H-type foliations with horizontally parallel

torsion.

Lemma 5.2.8 ([25, Lemma 2.14]). Let (M,H, g) be an H-type foliation that admits

a parallel horizontal Clifford structure with constant κ. Let W be a vector field along

a gε-geodesic γ with ε > 0. Let W⊥ be the gε-orthogonal projection of W on the

orthogonal complement of γ̇. Then

Z(W ) = ∇̂ε
γ̇∇̂ε

γ̇W − Jεγ̇∇̂ε
γ̇W + Jε∇̂εγ̇W

γ̇ + κJγ̇J
ε
(WV )⊥

γ̇ + JεT (W,γ̇)γ̇ +RH(W, γ̇)γ̇

+ ∇̂ε
γ̇(T (W, γ̇)) + κ(T (Jγ̇W, γ̇) + 〈W, γ̇H〉γ̇V) + κ2‖γ̇V‖2(WV)⊥.

Proof. We can write the Jacobi operator by expanding the adjoint ∇ε = ∇̂ε − T̂ ε as

Z(W ) = ∇̂ε
γ̇(∇̂ε

γ̇W − T̂ ε(γ̇,W )) + R̂ε(W, γ̇)γ̇.
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The proof follows by explicit computation of the horizontal and vertical part of the

above equation. We refer to [25] for the details.

5.3 Comparison theorems for H-type foliations with

parallel horizontal Clifford Structure

In this section, we will use theorem 5.2.4 to obtain bounds on Hess∇̂
ε
(rε) and therefore

on Hess∇(rε) by corollary 5.2.6. The approach is related to the proof of theorem 5.1.4

but requires some subtlety. In particular, we will need a decomposition of H that

distinguishes between directions associated to the geodesic by the J map and those

which are not.

5.3.1 The Splitting

Definition 5.3.1. For Y ∈ Γ(TM), prH Y 6= 0 we call the orthogonal splitting

H = HSas(Y )⊕HRiem(Y )⊕ span(prH Y )

the canonical splitting along Y , where

HSas(Y ) = {JZY : Z ∈ V}

HRiem(Y ) = {X ∈ H : X ⊥
(
HSas(Y )⊕ span(prH Y )

)
}

This splitting will be important, and is natural for the connection ∇̂ε in the

following sense.

Lemma 5.3.2 ([25, Proposition 3.2]). Let (M,H, g) be an H-type foliation with par-
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allel horizontal Clifford structure and satisfying the J2 condition. Let Y be a ∇̂ε
Y -

parallel vector field. Then each sub-bundle composing the canonical splitting along Y

is preserved by ∇̂ε
Y -parallel transport. We will say that the splitting is ∇̂ε

Y -parallel,

or just parallel.

Proof. It’s sufficient to show that HSas(Y ) is ∇̂ε
Y -parallel. For X = JZY ∈ HSas(Y )

we can write

∇̂ε
YX = JΨ(Y,Z)Y + J∇Y ZY +

1

ε
JY JZY.

By choosing Z to be ∇̂ε
Y -parallel and splitting into the cases Z ∝ prV Y and

Z ⊥ prV Y it follows that there exists a basis of HSas(Y ) closed under ∇̂ε-covariant

derivation, completing the proof. The details can be found in [25, proposition 3.2].

In particular, we will be interested in the case γ : [0, T ]→ M is a geodesic, along

which we will study the frame determined by the canonical splitting along γ̇.

Remark 5.3.3. In the case that (M,H, g) does not satisfy the J2 condition, it is

necessary to further refine the splitting. We first orthogonally split V = VSas(Y ) ⊕

VHtype(Y ) as

VSas(Y ) = {Z ∈ V : JY JZY ⊆ JV(Y )⊕ span(prH Y )}

VHtype(Y ) = {Z ∈ V : JY JZY ⊥
(
JV ⊕ span(prH Y )

)
, JY JZY 6= 0}

where VHtype(Y ) is motivated as being the space that precisely captures the vertical

vectors Z ∈ V for which the way we utilize the J2 condition in the following sections

fails. We then analogously split H = HSas(Y )⊕HHtype(Y )⊕HSas(Y )⊕ span(prH Y )
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as

HSas(Y ) = {JZY : Z ∈ VSas(Y )}

HHtype(Y ) = {JZY, JY JZY : Z ∈ VHtype}

HRiem(Y ) = {X ∈ H : X ⊥
(
HHtype ⊕HSas(Y )⊕ span(prH Y )

)
}.

The comparison theorems in the following sections then have to be slightly modified,

in particular to include a new theorem on HHtype, but the overall conclusion is very

similar.

Notice, however, that if prV Y = 0 then VHtype(Y ) = HHtype(Y ) = ∅ and the

splitting reduces to the canonical one. It will hold that in the sub-Riemannian limit

ε→ 0+ the comparisons converge uniformly, and since our primary motivation is the

study of the sub-Riemannian geometry (where Y = γ̇ ∈ H) we will not give further

details, but refer to section 3.7.1 through 3.7.3 of [25].

5.3.2 Comparison theorems along the canonical splitting

As in the Riemannian setting, the goal is to establish a comparison theorem relating

the curvature of M to the Hessian of the distance function r(y) = d(x, y) for some

fixed x ∈M. Note that in our setting the distance function rε(y) := dε(x, y) depends

on the choice of Riemannian metric gε, ε > 0. For vectors X ∈ H we will establish

comparison theorems for Hess(rε)(X,X) by distinguishing between X in each of the

components of the canonical decomposition along γ̇, where γ is the length-minimizing

geodesic connecting x to y /∈ Cutε(x). We establish some notation and make the

following remarks to keep the statement of the theorem as simple as possible.

For a unit speed gε-geodesic γ : [0, rε]→M containing no conjugate points joining



112

x = γ(0) to y = γ(rε) /∈ Cutε(x) it holds that dε(x, γ(t)) = t. In particular,

rε(y) = dε(x, y) and γ̇ = ∇gεrε. We can write

γ̇ = prH γ̇ + prV γ̇ = ∇Hrε + ε∇Vrε.

We will also denote by h = ‖∇Hrε‖ and v = ‖∇Vrε‖ as measured by the g1 = g

metric. Because γ is unit speed for the gε-metric we have the eikonal equation

‖∇gεrε‖2
ε = ‖γ̇‖2

ε = h2 + εv2 = 1.

See [54, 57] for a thorough discussion of geodesics and the eikonal equation. We note

that as ε→ 0+ (the sub-Riemannian limit) we will have h→ 1, v → 0, or equivalently

all geodesics become horizontal.

We recall the Riemannian comparison function definition 5.1.3, and establish

Definition 5.3.4 (Sasakian comparison function).

FSas(r, k) =



√
k(sin

√
kr−
√
kr cos

√
kr)

2−2 cos
√
kr−
√
kr sin

√
kr

if k > 0,

4
r

if k = 0,
√
|k|(
√
|k|r cosh

√
|k|r−sinh

√
|k|r)

2−2 cosh
√
|k|r+
√
|k|r sinh

√
|k|r

if k < 0.

This was first introduced in [6, Corollary 8.2] as a result of explicit computations on

dimension 3 contact manifolds. We will see that it is an appropariate sub-Riemannian

generalization of FRiem.

In theorem we will denote succinctly the assumptions on the H-type foliation

(M,H, g) by writing (J2) if it satisfies the J2 condition and (phCs) for the existence
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of a parallel horizontal Clifford structure with constant κ.

Theorem 5.3.5 ([25, Theorems 3.3, 3.4, 3.6, and 3.8]). Let (M,H, g) be an H-type

foliation with horizontally parallel torsion. Fix x ∈ M and y /∈ Cutε(x), and let

γ : [0, rε] → M be the unique unit speed gε-geodesic connecting x to y = γ(rε). Then

at y,

(a) Geodesic Comparison: Assume (phCs). For any unit X ∈ span(prH γ̇),

Hess∇(rε)(X,X) ≤ 1− h2

rε
.

(b) Riemannian Comparison: Assume (J2, phCs). Suppose there exists ρ ∈ R such

that whenever Y ∈ H, X ∈ HRiem(Y ) it holds that Sec(X ∧Y ) ≥ ρ. Then for any

unit X ∈ HRiem(γ̇)

Hess∇(rε)(X,X) ≤ FRiem(rε, ρh
2 +

1

4
v2).

(c) Sasakian Comparison: Suppose there exists ρ ∈ R such that for any X ∈ H, Z ∈ V

it holds that Sec(X∧JZX) ≥ ρ. For any unit X ∈ HSas(γ̇) we can write X = JZ γ̇,

and we have that

(i) If Z ∝ prV γ̇,

Hess∇(rε)(X,X) ≤ FSas(rε, ρh
2 + v2)

(ii) Assume (J2, phCs). If Z ⊥ prV γ̇,

Hess∇(rε)(X,X) ≤ FSas(rε, ρh
2 + (2− κε)(κε− 1)v2)
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Remark 5.3.6. Notice that that case (i) of the Sasakian comparison is singular in

only requiring horizontally parallel torsion. When m = 1 this is particularly powerful,

since it will contain all of HSas(γ̇) (notice that if γ̇ ∈ H the condition Z ∝ prV γ̇ is

trivial).

Remark 5.3.7. Notice that in the degenerate case m = rank(V) = 0 thatHRiem(γ̇) ∼=

H \ span(γ̇) ∼= TM \ span(γ̇) and h = 1, v = 0, thus the Riemannian comparison

recovers the classical theorem 5.1.4. The essential conclusion is that the Sasakian

directionsHSas are those for which the sub-Riemannian structure weakens the Hessian

comparison (by roughly a factor of 4 as rε → 0+, per remark 5.3.9).

Proof. The strategy in each case has a similar structure. We seek to apply theo-

rem 5.2.4.

• Along the geodesic direction, denoting prγ̇ X = prHX − h2γ̇ we can choose

W (t) =
t

rε
prγ̇ X(t)

for which the Jacobi equation is verified easily. By theorem 5.2.4 we have

Hess(rε)(prγ̇ X, prγ̇ X) ≤ 1− h2

rε
.

Consideration of the symmetries of the Hessian, an application of the eikonal

equation ‖γ̇‖ε = 1, and corollary 5.2.6 completes the proof.

• For the Riemannian and Sasakian comparisons, we can use lemma 5.2.8 to sim-

plify the Jacobi equation. If we assume that the sectional curvature is constant
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and choose

W = fX + gY

for an appropriate vector field Y , we can explicitly write the Jacobi equation

as an ODE in f, g and pick initial conditions that will force W to satisfy theo-

rem 5.2.4.

For example, in the Riemannian case X ∈ HRiem(γ̇) we choose Y = 1
εv
Jγ̇X and

the Jacobi equation becomes

f̈ + vġ + ρh2f = 0

g̈ − vḟ + ρh2g = 0

with initial conditions f(0) = f(rε(y))− 1 = g(0) = g(rε(y)) = 0.

In all cases the solution can be found explicitly, and applying theorem 5.2.4 and

corollary 5.2.6 the theorem follows.

Note that in the Sasakian case X = JZ γ̇ we must distinguish between Z ∝ prV γ̇

and Z ⊥ prV γ̇, with the second case being significantly more difficult. We arrive

at equivalent ODEs for both; the solution of the system is a function of ε > 0

but can be bounded above uniformly to complete the proof.

Remark 5.3.8. One can also determine vertical Hessian comparison theorems using

the same proof strategy outlined above. While the proof by this method splits into
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the cases Z ⊥ prV γ̇ and Z ∝ prV γ̇, we find that in all vertical directions Z ∈ V ,

Hess(rε)(Z,Z) ≤ 12

r3
ε

which agrees with the result [23, Remark 3.10].

Remark 5.3.9. Direct computation shows that for any fixed k, we have the asymp-

totic relation

FSas(r, k)

FRiem(r, k)
↘ 4 as r → 0+

with faster convergence as k → 0. Since all the curvature terms have the form

k = ρh2 + αv2 ε→0+−−−→ ρ+ α‖∇Vr0‖2, this tells us roughly that in the sub-Riemannian

limit the Hessian of the distance function grows 4 times as fast in Sasakian directions

than in Riemannian directions.

In fact, this coefficient 4 is related to the measure contraction property MCP

and geodesic dimension discussed in [103, 15]. The MCP is a different generalization

of Ricci lower curvature bounds, and the associated geodesic dimension that arises

can be thought of as a measure of the growth of geodesics. It is established in [15,

Theorem 3] that H-type Carnot groups satisfy the MCP with geodesic dimension

n + 3m; this is compatible with the above observation. See [4] for more on geodesic

dimension.

5.3.3 Uniform comparison theorems

In this section we conclude our previous analysis by arriving at purely sub-Riemannian

comparison theorems. The key idea here is that the results of theorem 5.3.5 are

uniform in ε > 0, and thus they carry over in the limit ε→ 0+ to the sub-Riemannian



117

structure.

We acheive Bonnet-Myers diameter bounds comparable to those acheived in [3]

on contact manifolds, [12] on quaternion contact manifolds, and [104] on 3-Sasakian

manifolds using the Hamiltonian approach developed in [14]. See also [62], in which

Grong develops a generalization to higher-step sub-Riemannian manifolds that agrees

with the results here.

We also have a sub-Laplacian comparison that naturally arises from our Hessian

bounds in an analogous way to the Riemannian Laplacian comparison theorem 5.1.4.

These agree with the results of [23].

Sub-Riemannian Bonnet-Myers theorems

We begin with a simple lemma following from theorem 5.3.5.

Lemma 5.3.10. Let (M,H, g) be an H-type foliation with horizontally parallel tor-

sion.

(a) Riemannian Estimate: Assume (J2, phCs). Suppose there exists ρ ∈ R such that

whenever Y ∈ H, X ∈ HRiem(Y ) it holds that Sec(X ∧ Y ) ≥ ρ, and KRiem :=

ρh2 + 1
4
v2 > 0. Then

rε <
π√
KRiem

(b) Sasakian Estimate: Suppose there exists ρ ∈ R such that for any X ∈ H, Z ∈ V

it holds that Sec(X ∧ JZX) ≥ ρ and KSas := ρh2 + v2 > 0. Then

rε <
2π√
KSas
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Proof. These follow from the fact that FRiem(r, k) diverges for r ≥ π√
k

and that

FSas(r, k) diverges for r ≥ 2π√
k
.

Denote by diam0(M) the sub-Riemannian diameter of M; that is,

diam0(M) = sup
x,y∈M

d0(x, y).

We can proceed directly from the lemma to a diameter estimate for M.

Theorem 5.3.11 ([25, Theorem 3.10(b)]). Let (M,H, g) be an H-type foliation that

is complete and has horizontally parallel torsion. Assume there is some ρ > 0 such

that for any unit X ∈ H, Z ∈ V we have

Sec(X ∧ JZX) ≥ ρ.

Then

diam0(M) ≤ 2π
√
ρ

Proof. We pass to the universal cover M̃. For ρ > 0, we have KSas = ρh2 + v2 > 0

and from case (b) of lemma 5.3.10 we have uniform convergence

2π√
KSas

ε→0+−−−→ 2π√
ρ+ ‖∇Vr0‖2

≤ 2π
√
ρ

completing the proof.

We can be more delicate, considering instead a condition on the horizontal Ricci

curvature

RicH(X, Y ) =
n∑
i=1

gH(R∇(Wi, X)Y,Wi)
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where the Wi form a g-orthonormal basis of H.

We decompose RicH(X,X) along the canonical decomposition for X ∈ H as

RicSas(X,X) + RicRiem(X,X) (observe that gH(R∇(X,X)X,X) = 0 and so the

span(X) term vanishes). More precisely,

RicSas(X,X) =
m∑
i=1

gH(R∇(JZiX,X)X, JZiX)

RicRiem(X,X) =
n−m−1∑
i=1

gH(R∇(Yi, X)X, Yi)

where the Zi form a gV-orthonormal basis for V and the Yi form a gH-orthonormal

basis for HRiem(X).

Theorem 5.3.12 ([25, Theorem 3.10(a,c)]). Let (M,H, g) be an H-type foliation that

is complete, has horizontally parallel Clifford structure, and satisfies the J2 condition.

(a) Riemannian-type Diameter Estimate: Suppose that n > m+1 and for any X ∈ H

there is a ρ > 0 such that

RicRiem(X,X) ≥ (n−m− 1)ρ‖X‖2.

Then

diam0(M) ≤ π
√
ρ

(b) Sasakian-type Diameter Estimate: Suppose that for any X ∈ H there is a ρ > 0

such that

RicSas(X,X) ≥ mρ‖X‖2.
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and either

(i) For any X ∈ H and unit Z ∈ V , Sec(X ∧ JZX) ≥ 0, OR

(ii) n > m+ 1 and for any X ∈ H, RicRiem(X,X) ≥ 0.

Then

diam0(M) ≤ 2π
√

3
√
ρ

Proof. Part (a) proceeds as in theorem 5.3.11, applying lemma 5.3.10 (a) after the

observation that the assumption

RicRiem(X,X) ≥ (n−m− 1)ρ‖X‖2

together with the J2 condition implies the existence of an orthonormal basis Xi for

HRiem(X) such that

n−m−1∑
i=1

Sec(X ∧Xi) ≥ (n−m− 1)ρ.

Part (b) is more subtle, we refer to [25].

It’s interesting to note that a lower bound on the Riemannian Ricci curvature

gives a sharp diameter estimate on the complex Hopf fibration, but a lower bound

on the Sasakian Ricci curvature does not. It remains to be seen if the method can

be improved. The diameter bound from theorem 5.3.11 is sharp on quaternionic

and octonionic Hopf fibrations, but undesirably requires a condition on the sectional

curvature. See [27, 29, 19].

Remark 5.3.13. Observing that RicH is the same curvature as in theorem 3.4.7, the
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Horizontal Einstein condition implies that

RicSas(X,X) + RicRiem(X,X) = λ‖X‖2.

This is insufficient to imply theorem 5.3.12 by itself, but if we assume n > m+ 1 and

the Horizontal Einstein condition holds with λ > 0 then

• RicSas(X,X) ≥ 0 =⇒ diam0(M) ≤ π
√

m
λ

• RicRiem(X,X) ≥ 0 =⇒ diam0(M) ≤ 2π
√

3
√

n−m−1
λ

.

Because the proofs of theorem 5.3.11 and theorem 5.3.12 pass from M to the

universal cover M̃, we also have that

Corollary 5.3.14. If theorem 5.3.11, theorem 5.3.12(a), or theorem 5.3.12(b) hold,

then (M,H, g) is compact with finite fundamental group.

Sub-Laplacian comparison theorems

Recall from section 3.2.3 the horizontal Laplacian ∆H defined as the horizontal trace

of the Hessian

∆Hu =
n∑
i=1

Hess∇(u)(Xi, Xi)

for a g-orthonormal basis Xi ofH. We can decompose the Hessian using the canonical

decomposition for any Y ∈ H and thereby obtain sub-Laplacian comparison theorems

for ∆Hrε. That is, we observe that

∆Hrε = Hess∇(rε)(∇Hrε,∇Hrε)+
m∑
i=1

Hess∇(rε)(JZi∇Hrε, JZi∇Hrε)+
n−m−1∑
i=1

Hess∇(rε)(Xi, Xi)



122

where the Zi form a g-orthogonal basis for V with ‖Zi‖ = 1
‖∇Hrε‖

and the Xi form a

g-orthonormal basis for HRiem(∇Hrε).

Combining the above results, we can establish a sub-Laplacian comparison theo-

rem as ε→ 0+.

Theorem 5.3.15 ([25, Theorem 3.12]). Let (M,H, g) be an H-type foliation with

parallel horizontal Clifford structure satisfying the J2 condition. Let x ∈ M and

define r0(y) = d0(x, y). Assume there exists ρ > 0 such that

Sec(X ∧ Y ) ≥ ρ

for all X, Y ∈ H. For y /∈ Cut0(x) we have

∆Hr0 ≤ (n−m− 1)FRiem(r0, KRiem) + FSas(r0, KSas,γ̇) + (m− 1)FSas(r0, KSas,⊥)

where

KRiem = ρ+
1

4
‖∇Vr0‖2

KSas,γ̇ = ρ+ ‖∇Vr0‖2

KRiem,⊥ = ρ− 2‖∇Vr0‖2

The highlight of the theorem being that it is completely independent of the metric

structure on V , and so it is a purely sub-Riemannian result.

Proof. The proof has two key steps. First one achieves an analogous comparison

theorem for ∆Hrε in the domain ε > 0 simply by summing the results of theorem 5.3.5.

It holds the for y /∈ Cutε(y) that we have uniform convergence rε → r0 (this is highly
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nontrivial, [25, Lemma A.1] for details) and as a consequence we have convergence

lim
ε→0+

∇Hrε = ∇Hr0 lim
ε→0+

∇Vrε = ∇Vr0.

We also have that the eikonal equation ‖∇Hrε‖2 + ε‖∇Vrε‖2 = 1 for ε > 0 implies

that ‖∇Hr0‖ = 1. Applying this with the comparison for ∆Hrε gives the theorem,

taking ε→ 0+.



Chapter 6

Future Research Directions

In this chapter we briefly consider possible directions for furthering this work.

Berger-Simons Holonomy Theorem

Considering the bijection between the horizontal holonomy of H-type submersions

and the Riemannian holonomy of their base spaces achieved in theorem 4.3.7, it is

possible that we might recover a partial proof of the Berger-Simons theorem 4.1.6.

It’s clear from the classification result theorem 3.2.12 that we cannot hope to find

the exceptional holonomy G2 via this approach since there is no H-type submersion

with this horizontal holonomy. However, improving theorem 4.3.11 could allow for a

recovery of the rest of the Berger-Simons classification. If successful, this would pro-

vide a complementary geometric proof to that of Olmos [93], which was accomplished

on submanifolds.

124
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Index results for the sub-Laplacian

The index theory of sub-Riemannian geometry is a very open field. There are many

obstructions, such as the fact that in the famous Atiyah-Singer theorem

ind(D) =

∫
M

ch(D) Td(M)

it’s not possible to define the Chern class ch(D) for a hypoelliptic operator such as

the sub-Laplacian. In particular, heat kernel approaches to the index theorem require

a decomposition of the Laplacian as the square of a Dirac operator, as

∆ = (d+ δ)2

where δ is the formal adjoint of the exterior derivative d by the Riemannian metric;

this isn’t sensible for a sub-Riemannian metric, as it is necessarily singular.

However, in the context of H-type foliations one can consider δε, defined for ε >

0 as the formal adjoint of d by the Riemannian metric gε. It seems possible to

recover uniform results on the behavior of these objects as was the approach for the

comparison theorems theorem 5.3.12 and theorem 5.3.15; if so, one could hope to

thereby achieve a McKean-Singer supertrace theorem in the ε → 0+ limit, leading

potentially to an index theory for the sub-Laplacian.
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Higher step sub-Riemannian manifolds

H-type foliations are necessarily models of 2-step sub-Riemannian structures because

of their definition using the Bott connection. By defining an analogous construction

using the Hladky connection 2.2.33 on higher-step sub-Riemannian manifolds with

an appropriate complementary Riemannian structure (which is not necessarily a fo-

liation), it is possible that we could study the action of a graded family of Clifford

algebras on the horizontal distribution and thereby achieve results for higher-step

sub-Riemannian manifolds. It is presently unclear how rigid this construction would

be.
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Zürich, 2016.

[18] F. Baudoin, M. Bonnefont, and N. Garofalo. A sub-Riemannian curvature-

dimension inequality, volume doubling property and the Poincaré inequality.
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[32] A. Belläıche. The tangent space in sub-Riemannian geometry. In Sub-

Riemannian geometry, volume 144 of Progr. Math., pages 1–78. Birkhäuser,
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[43] G. Bădiţoiu and S. Ianuş. Semi-Riemannian submersions from real and complex

pseudo-hyperbolic spaces. Differential Geometry and its Applications, 16(1):79–

94, 2002.

[44] E. Calabi. Improper affine hyperspheres of convex type and a generalization of

a theorem by K. Jörgens. The Michigan Mathematical Journal, 5(2):105–126,

1958.

[45] O. Calin, D.-C. Chang, and I. Markina. Geometric analysis on H-type groups

related to division algebras. Mathematische Nachrichten, 282(1):44–68, 2009.

[46] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson. An introduction to the

Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259

of Progress in Mathematics. Birkhäuser Verlag, Basel, May 2007.
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[48] É. Cartan. Sur une classe remarquable d’espaces de riemann. II. Bulletin de la
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des sciences de Toulouse Mathématiques, 9(2):305–366, 2000.
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